隐马尔可夫事件序列模型:迈向无监督功能磁共振成像脑图谱

Hidden Markov event sequence models: toward unsupervised functional MRI brain mapping.

作者信息

Faisan Sylvain, Thoraval Laurent, Armspach Jean-Paul, Foucher Jack R, Metz-Lutz Marie-Noëlle, Heitz Fabrice

机构信息

Université Louis Pasteur, Strasbourg, France.

出版信息

Acad Radiol. 2005 Jan;12(1):25-36. doi: 10.1016/j.acra.2004.09.012.

Abstract

RATIONALE AND OBJECTIVES

Most methods used in functional MRI (fMRI) brain mapping require restrictive assumptions about the shape and timing of the fMRI signal in activated voxels. Consequently, fMRI data may be partially and misleadingly characterized, leading to suboptimal or invalid inference. To limit these assumptions and to capture the broad range of possible activation patterns, a novel statistical fMRI brain mapping method is proposed. It relies on hidden semi-Markov event sequence models (HSMESMs), a special class of hidden Markov models (HMMs) dedicated to the modeling and analysis of event-based random processes.

MATERIALS AND METHODS

Activation detection is formulated in terms of time coupling between (1) the observed sequence of hemodynamic response onset (HRO) events detected in the voxel's fMRI signal and (2) the "hidden" sequence of task-induced neural activation onset (NAO) events underlying the HROs. Both event sequences are modeled within a single HSMESM. The resulting brain activation model is trained to automatically detect neural activity embedded in the input fMRI data set under analysis. The data sets considered in this article are threefold: synthetic epoch-related, real epoch-related (auditory lexical processing task), and real event-related (oddball detection task) fMRI data sets.

RESULTS

Synthetic data: Activation detection results demonstrate the superiority of the HSMESM mapping method with respect to a standard implementation of the statistical parametric mapping (SPM) approach. They are also very close, sometimes equivalent, to those obtained with an "ideal" implementation of SPM in which the activation patterns synthesized are reused for analysis. The HSMESM method appears clearly insensitive to timing variations of the hemodynamic response and exhibits low sensitivity to fluctuations of its shape (unsustained activation during task). Real epoch-related data: HSMESM activation detection results compete with those obtained with SPM, without requiring any prior definition of the expected activation patterns thanks to the unsupervised character of the HSMESM mapping approach. Along with activation maps, the method offers a wide range of additional fMRI analysis functionalities, including activation lag mapping, activation mode visualization, and hemodynamic response function analysis. Real event-related data: Activation detection results confirm and validate the overall strategy that consists in focusing the analysis on the transients, time-localized events that are the HROs.

CONCLUSION

All the experiments performed on synthetic and real fMRI data demonstrate the relevance of HSMESMs in fMRI brain mapping. In particular, the statistical character of these models, along with their learning and generalizing abilities are of particular interest when dealing with strong variabilities of the active fMRI signal across time, space, experiments, and subjects.

摘要

原理与目的

功能磁共振成像(fMRI)脑图谱中使用的大多数方法都需要对激活体素中fMRI信号的形状和时间做出严格假设。因此,fMRI数据可能会被部分地、误导性地描述,从而导致次优或无效的推断。为了限制这些假设并捕捉广泛的可能激活模式,提出了一种新颖的统计fMRI脑图谱方法。它依赖于隐藏半马尔可夫事件序列模型(HSMESM),这是一类特殊的隐藏马尔可夫模型(HMM),专门用于基于事件的随机过程的建模和分析。

材料与方法

激活检测是根据以下两者之间的时间耦合来制定的:(1)在体素的fMRI信号中检测到的血流动力学反应起始(HRO)事件的观察序列,以及(2)HRO事件背后的任务诱导神经激活起始(NAO)事件的“隐藏”序列。这两个事件序列都在单个HSMESM中进行建模。由此产生的脑激活模型经过训练,以自动检测分析中的输入fMRI数据集中嵌入的神经活动。本文中考虑的数据集有三类:合成的与epoch相关的、真实的与epoch相关的(听觉词汇处理任务)以及真实的与事件相关的(oddball检测任务)fMRI数据集。

结果

合成数据:激活检测结果证明了HSMESM映射方法相对于统计参数映射(SPM)方法的标准实现的优越性。它们也与使用SPM的“理想”实现获得的结果非常接近,有时甚至等效,在该实现中,合成的激活模式被重新用于分析。HSMESM方法对血流动力学反应的时间变化显然不敏感,并且对其形状的波动(任务期间的非持续激活)表现出低敏感性。真实的与epoch相关的数据:HSMESM激活检测结果与使用SPM获得的结果相当,由于HSMESM映射方法的无监督特性,无需对预期激活模式进行任何先验定义。除了激活图之外,该方法还提供了广泛的其他fMRI分析功能,包括激活滞后映射、激活模式可视化和血流动力学反应函数分析。真实的与事件相关的数据:激活检测结果证实并验证了将分析重点放在瞬态、时间定位的事件即HRO上的总体策略。

结论

对合成和真实fMRI数据进行的所有实验都证明了HSMESM在fMRI脑图谱中的相关性。特别是,当处理活跃的fMRI信号在时间、空间、实验和受试者之间的强烈变异性时,这些模型的统计特性以及它们的学习和泛化能力尤其令人关注。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索