Suppr超能文献

癫痫的点燃和癫痫持续状态模型:重塑大脑

Kindling and status epilepticus models of epilepsy: rewiring the brain.

作者信息

Morimoto Kiyoshi, Fahnestock Margaret, Racine Ronald J

机构信息

Department of Neuropsychiatry, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan.

出版信息

Prog Neurobiol. 2004 May;73(1):1-60. doi: 10.1016/j.pneurobio.2004.03.009.

Abstract

This review focuses on the remodeling of brain circuitry associated with epilepsy, particularly in excitatory glutamate and inhibitory GABA systems, including alterations in synaptic efficacy, growth of new connections, and loss of existing connections. From recent studies on the kindling and status epilepticus models, which have been used most extensively to investigate temporal lobe epilepsy, it is now clear that the brain reorganizes itself in response to excess neural activation, such as seizure activity. The contributing factors to this reorganization include activation of glutamate receptors, second messengers, immediate early genes, transcription factors, neurotrophic factors, axon guidance molecules, protein synthesis, neurogenesis, and synaptogenesis. Some of the resulting changes may, in turn, contribute to the permanent alterations in seizure susceptibility. There is increasing evidence that neurogenesis and synaptogenesis can appear not only in the mossy fiber pathway in the hippocampus but also in other limbic structures. Neuronal loss, induced by prolonged seizure activity, may also contribute to circuit restructuring, particularly in the status epilepticus model. However, it is unlikely that any one structure, plastic system, neurotrophin, or downstream effector pathway is uniquely critical for epileptogenesis. The sensitivity of neural systems to the modulation of inhibition makes a disinhibition hypothesis compelling for both the triggering stage of the epileptic response and the long-term changes that promote the epileptic state. Loss of selective types of interneurons, alteration of GABA receptor configuration, and/or decrease in dendritic inhibition could contribute to the development of spontaneous seizures.

摘要

本综述聚焦于与癫痫相关的脑回路重塑,尤其是在兴奋性谷氨酸能和抑制性γ-氨基丁酸(GABA)系统中,包括突触效能的改变、新连接的生长以及现有连接的丧失。从最近对点燃模型和癫痫持续状态模型的研究来看,这两种模型被最广泛地用于研究颞叶癫痫,现在很清楚的是,大脑会因过度的神经激活(如癫痫发作活动)而进行自我重组。这种重组的促成因素包括谷氨酸受体的激活、第二信使、即早基因、转录因子、神经营养因子、轴突导向分子、蛋白质合成、神经发生和突触形成。一些由此产生的变化可能反过来导致癫痫易感性的永久性改变。越来越多的证据表明,神经发生和突触形成不仅会出现在海马体的苔藓纤维通路中,也会出现在其他边缘结构中。长时间癫痫发作活动诱导的神经元丢失,也可能导致回路重构,尤其是在癫痫持续状态模型中。然而,不太可能有任何一个结构、可塑性系统、神经营养因子或下游效应通路对于癫痫发生是唯一关键的。神经系统对抑制调节的敏感性使得去抑制假说对于癫痫反应的触发阶段以及促进癫痫状态的长期变化都极具说服力。选择性中间神经元类型的丧失、GABA受体构型的改变和/或树突抑制的降低可能导致自发性癫痫发作的发生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验