Bouyer Patrice, Bradley Stefania Risso, Zhao Jinhua, Wang Wengang, Richerson George B, Boron Walter F
Department of Cellular & Molecular Physiology, SHM B-133, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
J Physiol. 2004 Aug 15;559(Pt 1):85-101. doi: 10.1113/jphysiol.2004.067793. Epub 2004 Jun 11.
Previous reports suggest that an important characteristic of chemosensitive neurones is an unusually large change of steady-state intracellular pH in response to a change in extracellular pH (DeltapH(i)/DeltapH(o)). To determine whether such a correlation exists between neurones from the medullary raphe (a chemosensitive brain region) and hippocampus (a non-chemosensitive region), we used BCECF to monitor pH(i) in cultured neurones subjected to extracellular acid-base disturbances. In medullary raphe neurones, respiratory acidosis (5%--> 9% CO(2)) caused a rapid fall in pH(i) (DeltapH(i) approximately 0.2) with no recovery and a large DeltapH(i)/DeltapH(o) of 0.71. Hippocampal neurones had a similar response, but with a slightly lower DeltapH(i)/DeltapH(o) (0.59). We further investigated a possible link between pH(i) regulation and chemosensitivity by following the pH(i) measurements on medullary raphe neurones with an immunocytochemistry for tryptophan hydroxylase (a marker of serotonergic neurones). We found that the DeltapH(i)/DeltapH(o) of 0.69 for serotonergic neurones (which are stimulated by acidosis) was not different from either the DeltapH(i)/DeltapH(o) of 0.75 for non-serotonergic neurones (most of which are not chemosensitive), or from the DeltapH(i)/DeltapH(o) of hippocampal neurones. For both respiratory alkalosis (5%--> 3% CO(2)) and metabolic alkalosis (22 mm--> 35 mm HCO(3)(-)), DeltapH(i)/DeltapH(o) was 0.42-0.53 for all groups of neurones studied. The only notable difference between medullary raphe and hippocampal neurones was in response to metabolic acidosis (22 mm--> 14 mm HCO(3)(-)), which caused a large pH(i) decrease in approximately 80% of medullary raphe neurones (DeltapH(i)/DeltapH(o)= 0.71), but relatively little pH(i) decrease in 70% of the hippocampal neurones (DeltapH(i)/DeltapH(o)= 0.09). Our comparison of medullary raphe and hippocampal neurones indicates that, except in response to metabolic acidosis, the neurones from the chemosensitive region do not have a uniquely high DeltapH(i)/DeltapH(o). Moreover, regardless of whether neurones were cultured from the chemosensitive or the non-chemosensitive region, pH(i) did not recover during any of the acid-base stresses.
先前的报告表明,化学敏感神经元的一个重要特征是,响应细胞外pH值的变化,稳态细胞内pH值会发生异常大的变化(ΔpH(i)/ΔpH(o))。为了确定延髓中缝(一个化学敏感脑区)和海马体(一个非化学敏感区)的神经元之间是否存在这种相关性,我们使用BCECF监测了受到细胞外酸碱干扰的培养神经元中的pH(i)。在延髓中缝神经元中,呼吸性酸中毒(5%→9% CO₂)导致pH(i)迅速下降(ΔpH(i)约为0.2)且无恢复,ΔpH(i)/ΔpH(o)为0.71。海马体神经元有类似的反应,但ΔpH(i)/ΔpH(o)略低(0.59)。我们通过对延髓中缝神经元进行pH(i)测量,并结合色氨酸羟化酶(一种血清素能神经元的标志物)的免疫细胞化学,进一步研究了pH(i)调节与化学敏感性之间的可能联系。我们发现,血清素能神经元(受酸中毒刺激)的ΔpH(i)/ΔpH(o)为0.69,与非血清素能神经元(其中大多数不具有化学敏感性)的ΔpH(i)/ΔpH(o) 0.75以及海马体神经元的ΔpH(i)/ΔpH(o)没有差异。对于呼吸性碱中毒(5%→3% CO₂)和代谢性碱中毒(22 mmol→35 mmol HCO₃⁻),所有研究的神经元组的ΔpH(i)/ΔpH(o)均为0.42 - 0.53。延髓中缝神经元和海马体神经元之间唯一显著的差异在于对代谢性酸中毒(22 mmol→14 mmol HCO₃⁻)的反应,这导致约80%的延髓中缝神经元的pH(i)大幅下降(ΔpH(i)/ΔpH(o)=0.71),而70%的海马体神经元的pH(i)下降相对较小(ΔpH(i)/ΔpH(o)=0.09)。我们对延髓中缝神经元和海马体神经元的比较表明,除了对代谢性酸中毒的反应外,来自化学敏感区的神经元并不具有独特的高ΔpH(i)/ΔpH(o)。此外,无论神经元是从化学敏感区还是非化学敏感区培养而来,在任何酸碱应激期间pH(i)都没有恢复。