Wang Wengang, Bradley Stefania Risso, Richerson George B
Departments of Neurology and Cellular & Molecular Physiology, Yale University, New Haven, CT 06510, USA.
J Physiol. 2002 May 1;540(Pt 3):951-70. doi: 10.1113/jphysiol.2001.013443.
The medullary raphe nuclei contain putative central respiratory chemoreceptor neurones that are highly sensitive to acidosis. To define the primary stimulus for chemosensitivity in these neurones, the response to hypercapnic acidosis was quantified and compared with the response to independent changes in P(CO2) and extracellular pH (pH(o)). Neurones from the ventromedial medulla of neonatal rats (P0-P2) were dissociated and maintained in tissue culture for long enough to develop a mature response (up to 70 days). Perforated patch clamp recordings were used to record membrane potential and firing rate while changes were made in pH(o), P(CO2) and/or NaHCO(3) from baseline values of 7.4, 5 % and 26 mM, respectively. Hypercapnic acidosis (P(CO2) 9 %; pH(o) 7.17) induced an increase in firing rate to 285 % of control in one subset of neurones ('stimulated neurones') and induced a decrease in firing rate to 21 % of control in a different subset of neurones ('inhibited neurones'). Isocapnic acidosis (pH(o) 7.16; NaHCO(3) 15 mM) induced an increase in firing rate of stimulated neurones to 309 % of control, and a decrease in firing rate of inhibited neurones to 38 % of control. In a different group of neurones, isohydric hypercapnia (9 % P(CO2); NaHCO(3) 40 mM) induced an increase in firing rate of stimulated neurones by the same amount (to 384 % of control) as in response to hypercapnic acidosis (to 327 % of control). Inhibited neurones also responded to isohydric hypercapnia in the same way as they did to hypercapnic acidosis. In Hepes-buffered solution, both types of neurone responded to changes in pH(o) in the same way as they responded to changes in pH(o) in bicarbonate-buffered Ringer solution. It has previously been shown that all acidosis-stimulated neurones in the medullary raphe are immunoreactive for tryptophan hydroxylase (TpOH-ir). Here it was found that TpOH-ir neurones in the medullary raphe were immunoreactive for carbonic anhydrase type II and type IV (CA II and CA IV). However, CA immunoreactivity was also common in neurones of the hypoglossal motor nucleus, inferior olive, hippocampus and cerebellum, indicating that its presence is not uniquely associated with chemosensitive neurones. In addition, under the conditions used here, acetazolamide (100 microM) did not have a significant effect on the response to hypercapnic acidosis. We conclude that chemosensitivity of raphe neurones can occur independently of changes in pH(o), P(CO2) or bicarbonate. The results suggest that a change in intracellular pH (pH(i)) may be the primary stimulus for chemosensitivity in these putative central respiratory chemoreceptor neurones.
延髓中缝核包含对酸中毒高度敏感的假定中枢呼吸化学感受器神经元。为了确定这些神经元化学敏感性的主要刺激因素,对高碳酸血症性酸中毒的反应进行了量化,并与对二氧化碳分压(P(CO2))和细胞外pH(pH(o))独立变化的反应进行了比较。从新生大鼠(P0 - P2)的延髓腹内侧分离出神经元,并在组织培养中维持足够长的时间以产生成熟反应(长达70天)。使用穿孔膜片钳记录来记录膜电位和放电频率,同时将pH(o)、P(CO2)和/或碳酸氢钠从基线值分别为7.4、5%和26 mM进行改变。高碳酸血症性酸中毒(P(CO2) 9%;pH(o) 7.17)导致一组神经元(“受刺激神经元”)的放电频率增加至对照的285%,而在另一组不同的神经元(“受抑制神经元”)中导致放电频率降低至对照的21%。等碳酸血症性酸中毒(pH(o) 7.16;碳酸氢钠 15 mM)导致受刺激神经元的放电频率增加至对照的309%,受抑制神经元的放电频率降低至对照的38%。在另一组不同的神经元中,等渗性高碳酸血症(9% P(CO2);碳酸氢钠 40 mM)导致受刺激神经元的放电频率增加幅度与对高碳酸血症性酸中毒的反应相同(至对照的384%)(对高碳酸血症性酸中毒的反应为至对照的327%)。受抑制神经元对等渗性高碳酸血症的反应与对高碳酸血症性酸中毒的反应相同。在赫佩斯缓冲溶液中,两种类型的神经元对pH(o)变化的反应方式与它们在碳酸氢盐缓冲林格溶液中对pH(o)变化的反应方式相同。先前已表明,延髓中缝所有对酸中毒有反应的神经元对色氨酸羟化酶呈免疫反应(TpOH - ir)。在此发现,延髓中缝的TpOH - ir神经元对碳酸酐酶II型和IV型(CA II和CA IV)呈免疫反应。然而,CA免疫反应性在舌下运动核、下橄榄核、海马和小脑的神经元中也很常见,这表明其存在并非与化学敏感神经元唯一相关。此外,在此使用的条件下,乙酰唑胺(100 microM)对高碳酸血症性酸中毒的反应没有显著影响。我们得出结论,中缝神经元的化学敏感性可以独立于pH(o)、P(CO2)或碳酸氢盐的变化而发生。结果表明,细胞内pH(pH(i))的变化可能是这些假定的中枢呼吸化学感受器神经元化学敏感性的主要刺激因素。