Bouyer Patrice G, Occhipinti Rossana, Taki Sara, Moss Fraser J, Boron Walter F
Department of Biology, Valparaiso University, Valparaiso, IN, United States.
Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.
Front Physiol. 2025 Mar 14;15:1494956. doi: 10.3389/fphys.2024.1494956. eCollection 2024.
This & contribution accompanies the research paper by Bouyer et al. (Frontiers in Physiology 2024), the first to employ out-of-equilibrium (OOE) CO/HCO solutions to examine systematically the intracellular pH (pH) effects of extracellular (o) metabolic acidosis (MAc) and its components: an isolated decrease in pH (pure acidosis, pAc) and an isolated decrease in [HCO ] (pure metabolic/down, pMet↓). In this study, after reviewing various types of acid-base disturbances and the use of OOE solutions, we discuss pH "state" (ΔpH, in response to a single acid-base challenge) and "behavior" (the ΔpH transition observed between two successive challenges), along with approaches for quantifying state and behavior. We then discuss the molecular basis of how individual extracellular acid-base disturbances influence pH via effects on-and interactions among-acid-base transporters, acid-base sensors, and cellular constitution. Next, we examine the determinants of states and behaviors, their impact on the buffering of extracellular acid loads, and how variability in state and behavior might arise. We conclude with a consideration of how mathematical models-despite their inherent limitations-might assist in the interpretation of experiments and qualitative models presented in this study. Among the themes that emerge are (1) hippocampal neurons must have distinct sensors for pH and [HCO ]; (2) these pH- and [HCO ]-driven signal transduction pathways produce additive pH effects in naïve neurons (those not previously challenged by an acid-base disturbance); and (3) these pathways produce highly non-additive pH effects in neurons previously challenged by MAc.
本论文是对布耶等人(《生理学前沿》,2024年)研究论文的补充,该研究首次采用非平衡(OOE)CO/HCO溶液系统研究细胞外(o)代谢性酸中毒(MAc)及其组成部分对细胞内pH值的影响:pH值单独降低(单纯酸中毒,pAc)和[HCO]单独降低(单纯代谢性降低,pMet↓)。在本研究中,在回顾了各种类型的酸碱紊乱和OOE溶液的使用后,我们讨论了pH“状态”(响应单一酸碱挑战时的ΔpH)和“行为”(在两个连续挑战之间观察到的ΔpH转变),以及量化状态和行为的方法。然后,我们讨论了个体细胞外酸碱紊乱如何通过对酸碱转运体、酸碱传感器和细胞组成的影响及它们之间的相互作用来影响pH值的分子基础。接下来,我们研究了状态和行为的决定因素、它们对细胞外酸负荷缓冲的影响,以及状态和行为的变异性可能如何产生。我们最后考虑了数学模型——尽管其存在固有局限性——如何有助于解释本研究中呈现的实验和定性模型。出现的主题包括:(1)海马神经元必须具有用于pH值和[HCO]的不同传感器;(2)这些由pH值和[HCO]驱动的信号转导途径在未受酸碱紊乱挑战的幼稚神经元(即之前未受酸碱紊乱挑战的神经元)中产生相加的pH值效应;(3)这些途径在先前受MAc挑战的神经元中产生高度非相加的pH值效应。