van Dijk Steven, Thierens Dirk, de Berg Mark
Institute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands.
Evol Comput. 2004 Summer;12(2):243-67. doi: 10.1162/106365604323142842.
In this paper, we study two recent theoretical models--a population-sizing model and a convergence model--and examine their assumptions to gain insights into the conditions under which selecto-recombinative GAs work well. We use these insights to formulate several design rules to develop competent GAs for practical problems. To test the usefulness of the design rules, we consider as a case study the map-labeling problem, an NP-hard problem from cartography. We compare the predictions of the theoretical models with the actual performance of the GA for the map-labeling problem. Experiments show that the predictions match the observed scale-up behavior of the GA, thereby strengthening our claim that the design rules can guide the design of competent selecto-recombinative GAs for realistic problems.
在本文中,我们研究了两种近期的理论模型——一种种群规模模型和一种收敛模型——并检验它们的假设,以深入了解选择重组遗传算法在何种条件下能良好运行。我们利用这些见解制定了几条设计规则,以便为实际问题开发出性能良好的遗传算法。为了测试这些设计规则的实用性,我们以地图标注问题为例进行研究,该问题是制图学中的一个NP难问题。我们将理论模型的预测结果与遗传算法在地图标注问题上的实际性能进行了比较。实验表明,这些预测结果与观察到的遗传算法的规模放大行为相匹配,从而强化了我们的观点,即这些设计规则能够指导为实际问题设计性能良好的选择重组遗传算法。