Myers Michael P, Khanna Rajesh, Lee Eun Jeon, Papazian Diane M
Department of Physiology and Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Box 951751, Los Angeles, CA 90095-1751, USA.
FEBS Lett. 2004 Jun 18;568(1-3):110-6. doi: 10.1016/j.febslet.2004.05.023.
In Shaker K(+) channels, formation of an electrostatic interaction between two charged residues, D316 and K374 in transmembrane segments S3 and S4, respectively, is a key step in voltage sensor biogenesis. Mutations D316K and K374E disrupt formation of the voltage sensor and lead to endoplasmic reticulum retention. We have now investigated the fates of these misfolded proteins. Both are significantly less stable than the wild-type protein. D316K is degraded by cytoplasmic proteasomes, whereas K374E is degraded by a lactacystin-insensitive, non-proteasomal pathway. Our results suggest that the D316K and K374E proteins are misfolded in recognizably different ways, an observation with implications for voltage sensor biogenesis.
在震颤器钾离子通道中,跨膜片段S3中的带负电残基D316与跨膜片段S4中的带正电残基K374之间形成静电相互作用,是电压传感器生物合成的关键步骤。D316K和K374E突变会破坏电压传感器的形成,并导致内质网滞留。我们现在研究了这些错误折叠蛋白的命运。两者的稳定性均明显低于野生型蛋白。D316K被细胞质蛋白酶体降解,而K374E则通过对乳胞素不敏感的非蛋白酶体途径降解。我们的结果表明,D316K和K374E蛋白以明显不同的方式错误折叠,这一观察结果对电压传感器生物合成具有重要意义。