Yang Xiong-Li
Institute of Neurobiology, Fudan University, 220 Handan Road, Shanghai 200433, China.
Prog Neurobiol. 2004 Jun;73(2):127-50. doi: 10.1016/j.pneurobio.2004.04.002.
Glutamate and gamma-aminobutyric acid (GABA) are major excitatory and inhibitory neurotransmitters in the vertebrate retina, "a genuine neural center" (Ramón y Cajal, 1964, Recollections of My Life, C.E. Horne (Translater) MIT Press, Cambridge, MA). Photoreceptors, generating visual signals, and bipolar cells, mediating signal transfer from photoreceptors to ganglion cells, both release glutamate, which induces and/or changes the activity of the post-synaptic neurons (horizontal and bipolar cells for photoreceptors; amacrine and ganglion cells for bipolar cells). Horizontal and amacrine cells, which mediate lateral interaction in the outer and inner retina respectively, use GABA as a principal neurotransmitter. In recent years, glutamate receptors and GABA receptors in the retina have been extensively studied, using multi-disciplinary approaches. In this article some important advances in this field are reviewed, with special reference to retinal information processing. Photoreceptors possess metabotropic glutamate receptors and several subtypes of GABA receptors. Most horizontal cells express AMPA receptors, which may be predominantly assembled from flop slice variants. In addition, these cells also express GABAA and GABAC receptors. Signal transfer from photoreceptors to bipolar cells is rather complicated. Whereas AMPA/KA receptors mediate transmission for OFF type bipolar cells, several subtypes of glutamate receptors, both ionotropic and metabotropic, are involved in the generation of light responses of ON type bipolar cells. GABAA and GABAC receptors with distinct kinetics are differentially expressed on dendrites and axon terminals of both ON and OFF bipolar cells, mediating inhibition from horizontal cells and amacrine cells. Amacrine cells possess ionotropic glutamate receptors, whereas ganglion cells express both ionotropic and metabotropic glutamate receptors. GABAA receptors exist in amacrine and ganglion cells. Physiological data further suggest that GABAC receptors may be involved in the activity of these neurons. Moreover, responses of these retinal third order neurons are modulated by GABAB receptors, and in ganglion cells there exist several subtypes of GABAB receptors. A variety of glutamate receptor and GABA receptor subtypes found in the retina perform distinct functions, thus providing a wide range of neural integration and versatility of synaptic transmission. Perspectives in this research field are presented.
谷氨酸和γ-氨基丁酸(GABA)是脊椎动物视网膜中的主要兴奋性和抑制性神经递质,视网膜是“一个真正的神经中枢”(拉蒙·伊·卡哈尔,1964年,《我的生活回忆》,C.E.霍恩(翻译),麻省理工学院出版社,马萨诸塞州剑桥)。产生视觉信号的光感受器和介导从光感受器到神经节细胞信号传递的双极细胞都释放谷氨酸,谷氨酸可诱导和/或改变突触后神经元的活性(光感受器的水平细胞和双极细胞;双极细胞的无长突细胞和神经节细胞)。分别介导外视网膜和内视网膜侧向相互作用的水平细胞和无长突细胞以GABA作为主要神经递质。近年来,利用多学科方法对视网膜中的谷氨酸受体和GABA受体进行了广泛研究。本文回顾了该领域的一些重要进展,特别涉及视网膜信息处理。光感受器具有代谢型谷氨酸受体和几种GABA受体亚型。大多数水平细胞表达AMPA受体,这些受体可能主要由翻转片变体组装而成。此外,这些细胞还表达GABAA和GABAC受体。从光感受器到双极细胞的信号传递相当复杂。AMPA/KA受体介导OFF型双极细胞的传递,而几种离子型和代谢型谷氨酸受体亚型参与ON型双极细胞光反应的产生。具有不同动力学的GABAA和GABAC受体在ON和OFF双极细胞的树突和轴突终末上有差异表达,介导来自水平细胞和无长突细胞的抑制。无长突细胞具有离子型谷氨酸受体,而神经节细胞表达离子型和代谢型谷氨酸受体。GABAA受体存在于无长突细胞和神经节细胞中。生理学数据进一步表明GABAC受体可能参与这些神经元的活动。此外,这些视网膜三级神经元的反应受GABAB受体调节,并且在神经节细胞中存在几种GABAB受体亚型。视网膜中发现的多种谷氨酸受体和GABA受体亚型具有不同的功能,从而提供了广泛的神经整合和突触传递的多样性。本文还介绍了该研究领域的前景。