Matthews Ivan, Kirkpatrick Carl, Holford Nicholas
Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand.
Br J Clin Pharmacol. 2004 Jul;58(1):8-19. doi: 10.1111/j.1365-2125.2004.02114.x.
[1] To quantify the random and predictable components of variability for aminoglycoside clearance and volume of distribution [2] To investigate models for predicting aminoglycoside clearance in patients with low serum creatinine concentrations [3] To evaluate the predictive performance of initial dosing strategies for achieving an aminoglycoside target concentration.
Aminoglycoside demographic, dosing and concentration data were collected from 697 adult patients (> or =20 years old) as part of standard clinical care using a target concentration intervention approach for dose individualization. It was assumed that aminoglycoside clearance had a renal and a nonrenal component, with the renal component being linearly related to predicted creatinine clearance.
A two compartment pharmacokinetic model best described the aminoglycoside data. The addition of weight, age, sex and serum creatinine as covariates reduced the random component of between subject variability (BSVR) in clearance (CL) from 94% to 36% of population parameter variability (PPV). The final pharmacokinetic parameter estimates for the model with the best predictive performance were: CL, 4.7 l h(-1) 70 kg(-1); intercompartmental clearance (CLic), 1 l h(-1) 70 kg(-1); volume of central compartment (V1), 19.5 l 70 kg(-1); volume of peripheral compartment (V2) 11.2 l 70 kg(-1).
Using a fixed dose of aminoglycoside will achieve 35% of typical patients within 80-125% of a required dose. Covariate guided predictions increase this up to 61%. However, because we have shown that random within subject variability (WSVR) in clearance is less than safe and effective variability (SEV), target concentration intervention can potentially achieve safe and effective doses in 90% of patients.
[1] 量化氨基糖苷类药物清除率和分布容积变异性的随机和可预测成分;[2] 研究预测血清肌酐浓度低的患者氨基糖苷类药物清除率的模型;[3] 评估实现氨基糖苷类药物目标浓度的初始给药策略的预测性能。
作为标准临床护理的一部分,采用目标浓度干预方法进行剂量个体化,收集了697例成年患者(≥20岁)的氨基糖苷类药物人口统计学、给药和浓度数据。假设氨基糖苷类药物清除率有肾脏和非肾脏成分,其中肾脏成分与预测的肌酐清除率呈线性相关。
二室药代动力学模型能最好地描述氨基糖苷类药物数据。加入体重、年龄、性别和血清肌酐作为协变量后,清除率(CL)的受试者间变异性(BSVR)的随机成分从总体参数变异性(PPV)的94%降至36%。预测性能最佳的模型的最终药代动力学参数估计值为:CL,4.7 l h⁻¹ 70 kg⁻¹;室间清除率(CLic),1 l h⁻¹ 70 kg⁻¹;中央室容积(V1),19.5 l 70 kg⁻¹;外周室容积(V2)11.2 l 70 kg⁻¹。
使用固定剂量的氨基糖苷类药物,80%至125%的所需剂量内可使35%的典型患者达到目标浓度。协变量引导预测可将这一比例提高至61%。然而,由于我们已表明清除率的受试者内变异性(WSVR)小于安全有效变异性(SEV),目标浓度干预有可能使90%的患者达到安全有效的剂量。