Choi Mei Y, Cardarelli Lia, Therien Alex G, Deber Charles M
Division of Structural Biology and Biochemistry, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.
Biochemistry. 2004 Jun 29;43(25):8077-83. doi: 10.1021/bi0494525.
Polar residues comprise about 15% of the transmembrane (TM) domains of proteins, where they can stabilize structure via native side chain-side chain interhelical hydrogen bonds between TM helices. However, non-native H-bonds may be implicated in disease states, through limiting protein dynamics during transport and/or misfolding the protein by inducing non-native rotational positions about TM helical axes. Here we have undertaken an investigation of the presence and strength of H-bond interactions within a series of helix-loop-helix ("hairpin") constructs derived from TM helices 3 and 4 (italic) of the cystic fibrosis transmembrane conductance regulator (CFTR) (prototypic sequence G(194)LALAHFVWIAPLQ(207)VALLMGLIWELLQASAFAGLGFLIV(232)LALFQ(237)AGLG(241)) in which wild-type Q207 in TM3 forms an interhelical H-bond with CF-phenotypic mutant V232D in TM4 [Therien, A. G., Grant, F. E., and Deber, C. M. (2001) Nat. Struct. Biol 8, 597-601]. In the present work, a library of 21 TM3/4 constructs was prepared, where Asp residues were placed individually at TM4 positions 221-241. Using gel shift assays-in which H-bond-linked hairpins (closed conformation) migrate faster than the elongated forms (open conformation)-we found that Q207 in TM3 is able to "capture" all 21 TM4 D mutations into measurable populations of interhelical H-bonds. A similar library of TM4 D mutants-but also containing Q207L-reverted to wild-type migration rates, confirming Q207 as the polar partner for TM4 D residues. In view of the broad capture range of Q207, these results emphasize the potential consequences to folding and dynamics of introducing polar mutations into the TM domains of membrane proteins in the vicinity of a native polar TM residue.
极性残基约占蛋白质跨膜(TM)结构域的15%,在那里它们可以通过TM螺旋之间天然的侧链-侧链螺旋间氢键来稳定结构。然而,非天然氢键可能与疾病状态有关,通过在运输过程中限制蛋白质动力学和/或通过诱导TM螺旋轴周围的非天然旋转位置使蛋白质错误折叠。在这里,我们对一系列源自囊性纤维化跨膜传导调节因子(CFTR)的TM螺旋3和4(斜体)的螺旋-环-螺旋(“发夹”)结构中的氢键相互作用的存在和强度进行了研究(原型序列为G(194)LALAHFVWIAPLQ(207)VALLMGLIWELLQASAFAGLGFLIV(232)LALFQ(237)AGLG(241)),其中TM3中的野生型Q207与TM4中的CF表型突变体V232D形成螺旋间氢键[Therien, A. G., Grant, F. E., and Deber, C. M. (2001) Nat. Struct. Biol 8, 597 - 601]。在本研究中,制备了一个包含21种TM3/4结构的文库,其中在TM4的221 - 241位单独放置了天冬氨酸残基。使用凝胶迁移分析——其中氢键连接的发夹(闭合构象)比伸长形式(开放构象)迁移得更快——我们发现TM3中的Q207能够将所有21种TM4 D突变“捕获”到可测量的螺旋间氢键群体中。一个类似的TM4 D突变体文库——但也包含Q207L——恢复到野生型迁移速率,证实了Q207是TM4 D残基的极性伙伴。鉴于Q207广泛的捕获范围,这些结果强调了在天然极性TM残基附近的膜蛋白TM结构域中引入极性突变对折叠和动力学的潜在影响。