Loo Tip W, Bartlett M Claire, Clarke David M
Department of Medicine and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
J Biol Chem. 2008 Sep 5;283(36):24860-70. doi: 10.1074/jbc.M803351200. Epub 2008 Jul 2.
A key goal is to correct defective folding of mutant ATP binding cassette (ABC) transporters, as they cause diseases such as cystic fibrosis. P-glycoprotein (ABCB1) is a useful model system because introduction of an arginine at position 65 of the first transmembrane (TM) segment could repair folding defects. To determine the mechanism of arginine rescue, we first tested the effects of introducing arginines at other positions in TM1 (residues 52-72) of a P-glycoprotein processing mutant (G251V) that is defective in folding and trafficking to the cell surface (20% maturation efficiency). We found that arginines introduced into one face of the TM1 helix (positions 52, 55, 56, 59, 60, 62, 63, 66, and 67) inhibited maturation, whereas arginines on the opposite face of the helix promoted (positions 64, 65, 68, and 71) or had little effect (positions 61, and 69) on maturation. Arginines at positions 61, 64, 65, and 68 appeared to lie close to the drug binding sites as they reduced the apparent affinity for drug substrates such as vinblastine and verapamil. Therefore, arginines that promoted maturation may face an aqueous drug translocation pathway, whereas those that inhibited maturation may face the lipid bilayer. The highest maturation efficiencies (60-85%) were observed with the Arg-65 and Arg-68 mutants. Mutations that removed hydrogen bond acceptors (Y950F/Y950A or Y953F/Y953A) in TM11 predicted to lie close to Arg-65 or Arg-68 inhibited maturation but did not affect maturation of the G251V parent. Therefore, arginine may rescue defective folding by promoting packing of the TM segments through hydrogen bond interactions.
一个关键目标是纠正突变型ATP结合盒(ABC)转运蛋白的错误折叠,因为它们会引发诸如囊性纤维化等疾病。P-糖蛋白(ABCB1)是一个有用的模型系统,因为在第一个跨膜(TM)片段的第65位引入精氨酸可以修复折叠缺陷。为了确定精氨酸拯救的机制,我们首先测试了在P-糖蛋白加工突变体(G251V)的TM1(第52 - 72位残基)的其他位置引入精氨酸的效果,该突变体在折叠和转运到细胞表面方面存在缺陷(成熟效率为20%)。我们发现,引入到TM1螺旋一侧(第52、55、56、59、60、62、63、66和67位)的精氨酸会抑制成熟,而螺旋另一侧的精氨酸(第64、65、68和71位)则促进(第64、65、68和71位)或对成熟影响很小(第61和69位)。第61、64、65和68位的精氨酸似乎靠近药物结合位点,因为它们降低了对长春碱和维拉帕米等药物底物的表观亲和力。因此,促进成熟的精氨酸可能面向水性药物转运途径,而抑制成熟的精氨酸可能面向脂质双层。在Arg - 65和Arg - 68突变体中观察到最高的成熟效率(60 - 85%)。预测位于靠近Arg - 65或Arg - 68的TM11中去除氢键受体(Y950F/Y950A或Y953F/Y953A)的突变会抑制成熟,但不影响G251V亲本的成熟。因此,精氨酸可能通过氢键相互作用促进TM片段的堆积来拯救缺陷折叠。