Wehbi Hania, Gasmi-Seabrook Geneviève, Choi Mei Y, Deber Charles M
Division of Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8.
Biochim Biophys Acta. 2008 Jan;1778(1):79-87. doi: 10.1016/j.bbamem.2007.08.036. Epub 2007 Sep 15.
Mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) cause CF disease by altering the biosynthesis, maturation, folding and ion conductance of this protein. Our laboratory has focused on expression and structural analysis of the CFTR transmembrane (TM) domains using two-TM segments (i.e., helix-loop-helix constructs) which we term 'helical hairpins'; these represent the minimal model of tertiary contacts between two helices in a membrane. Previous studies on a library of TM3/4 hairpins of the first CFTR TM domain suggested that introduction of non-native polar residues into TM4 can compromise CFTR function through side chain-side chain H-bonding interactions with native Q207 in TM3 [Choi, M. Y., Cardarelli, L., Therien, A. G., and Deber, C. M. Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations, Biochemistry 43 (2004) 8077-8083]. In the present work, we combine gel shift assays with a series of NMR experiments for comparative structural characterization of the wild type TM3/4 hairpin and its mutants V232D, I231D, Q207N/V232E. Over 95% of the backbone resonances of a 15N,13C-labelled V232D-TM3/4 construct in the membrane-mimetic environment of perfluorooctanoate (PFO) micelles were successfully assigned, and the presence and boundaries of helical segments within TM3 and TM4 were defined under these conditions. Comparative analysis of 15N and 1H chemical shift variations among HSQC spectra of WT-, V232D-, I231D- and Q207N/V232E-TM3/4 indicated that hairpin conformations vary with the position of a polar mutation (i.e., V232D and I231D vs. WT), but remain similar when hairpins with identically-positioned polar partners are compared (i.e., V232D vs. Q207N-V232E). The overall findings suggest that a polar mutation in a TM helix can potentially distort native interfacial packing determinants in membrane proteins such as CFTR, with consequences that may lead to disease.
囊性纤维化跨膜传导调节因子(CFTR)的突变通过改变该蛋白的生物合成、成熟、折叠和离子传导来引发囊性纤维化疾病。我们实验室专注于使用我们称为“螺旋发夹”的双跨膜片段(即螺旋-环-螺旋结构)对CFTR跨膜(TM)结构域进行表达和结构分析;这些代表了膜中两个螺旋之间三级接触的最小模型。先前对第一个CFTR TM结构域的TM3/4发夹文库的研究表明,将非天然极性残基引入TM4可通过与TM3中的天然Q207的侧链-侧链氢键相互作用损害CFTR功能[Choi, M. Y., Cardarelli, L., Therien, A. G., and Deber, C. M. 极性突变调节的囊性纤维化跨膜传导调节因子结构域中的非天然螺旋间氢键,《生物化学》43 (2004) 8077 - 8083]。在本研究中,我们将凝胶迁移分析与一系列核磁共振实验相结合,以对野生型TM3/4发夹及其突变体V232D、I231D、Q207N/V232E进行比较结构表征。在全氟辛酸(PFO)胶束的膜模拟环境中,成功归属了15N、13C标记的V232D - TM3/4构建体超过95%的主链共振,并在这些条件下确定了TM3和TM4内螺旋片段的存在和边界。对WT -、V232D -、I231D - 和Q207N/V232E - TM3/4的HSQC谱图中15N和1H化学位移变化的比较分析表明,发夹构象随极性突变的位置而变化(即V232D和I231D与WT相比),但当比较具有相同位置极性伴侣(即V232D与Q207N - V232E)的发夹时,它们仍然相似。总体研究结果表明,TM螺旋中的极性突变可能会潜在地扭曲膜蛋白(如CFTR)中的天然界面堆积决定因素,其后果可能导致疾病。