Perlow-Poehnelt Rebecca A, Likhterov Ilya, Scicchitano David A, Geacintov Nicholas E, Broyde Suse
Department of Biology, New York University, New York, NY 10003, USA.
J Biol Chem. 2004 Aug 27;279(35):36951-61. doi: 10.1074/jbc.M404332200. Epub 2004 Jun 21.
Y-family DNA polymerases lack some of the mechanisms that replicative DNA polymerases employ to ensure fidelity, resulting in higher error rates during replication of undamaged DNA templates and the ability to bypass certain aberrant bases, such as those produced by exposure to carcinogens, including benzo[a]pyrene (BP). A tumorigenic metabolite of BP, (+)-anti-benzo-[a]pyrene diol epoxide, attacks DNA to form the major 10S (+)-trans-anti-[BP]-N(2)-dG adduct, which has been shown to be mutagenic in a number of prokaryotic and eukaryotic systems. The 10S (+)-trans-anti-[BP]-N(2)-dG adduct can cause all three base substitution mutations, and the SOS response in Escherichia coli increases bypass of bulky adducts, suggesting that Y-family DNA polymerases are involved in the bypass of such lesions. Dpo4 belongs to the DinB branch of the Y-family, which also includes E. coli pol IV and eukaryotic pol kappa. We carried out primer extension assays in conjunction with molecular modeling and molecular dynamics studies in order to elucidate the structure-function relationship involved in nucleotide incorporation opposite the bulky 10S (+)-trans-anti-[BP]-N(2)-dG adduct by Dpo4. Dpo4 is able to bypass the 10S (+)-trans-anti-[BP]-N(2)-dG adduct, albeit to a lesser extent than unmodified guanine, and the V(max) values for insertion of all four nucleotides opposite the adduct by Dpo4 are similar. Computational studies suggest that 10S (+)-trans-anti-[BP]-N(2)-dG can be accommodated in the active site of Dpo4 in either the anti or syn conformation due to the limited protein-DNA contacts and the open nature of both the minor and major groove sides of the nascent base pair, which can contribute to the promiscuous nucleotide incorporation opposite this lesion.
Y家族DNA聚合酶缺乏一些复制性DNA聚合酶用于确保保真度的机制,导致在未受损DNA模板复制过程中错误率更高,并且能够绕过某些异常碱基,例如暴露于致癌物(包括苯并[a]芘(BP))所产生的碱基。BP的一种致癌代谢物,(+)-反式苯并[a]芘二氢二醇环氧化物,攻击DNA形成主要的10S(+)-反式-反式-[BP]-N(2)-dG加合物,已证明该加合物在许多原核和真核系统中具有致突变性。10S(+)-反式-反式-[BP]-N(2)-dG加合物可导致所有三种碱基取代突变,大肠杆菌中的SOS反应增加了对大体积加合物的绕过,这表明Y家族DNA聚合酶参与了此类损伤的绕过。Dpo4属于Y家族的DinB分支,该分支还包括大肠杆菌pol IV和真核生物pol κ。我们结合分子建模和分子动力学研究进行了引物延伸分析,以阐明Dpo4在与大体积的10S(+)-反式-反式-[BP]-N(2)-dG加合物相对的核苷酸掺入过程中涉及的结构-功能关系。Dpo4能够绕过10S(+)-反式-反式-[BP]-N(2)-dG加合物,尽管程度低于未修饰的鸟嘌呤,并且Dpo4在该加合物相对位置插入所有四种核苷酸的V(max)值相似。计算研究表明,由于蛋白质-DNA接触有限以及新生碱基对小沟和大沟两侧的开放性质,10S(+)-反式-反式-[BP]-N(2)-dG可以以反式或顺式构象容纳在Dpo4的活性位点中,这可能导致针对该损伤的混杂核苷酸掺入。