Suppr超能文献

Determining the optimal developmental route of Strongyloides ratti: an evolutionarily stable strategy approach.

作者信息

Fenton Andrew, Paterson Steve, Viney Mark E, Gardner Michael P

机构信息

Institute of Zoology, The Zoological Society of London, Regents Park, London NW1 4RY, United Kingdom.

出版信息

Evolution. 2004 May;58(5):989-1000. doi: 10.1111/j.0014-3820.2004.tb00433.x.

Abstract

Understanding the processes that drive parasite evolution is crucial to the development of management programs that sustain long-term, effective control of infectious disease in the face of parasite adaptation. Here we present a novel evolutionarily stable strategy (ESS) model of the developmental decisions of a nematode parasite, Strongyloides ratti. The genus Strongyloides exhibits an unusual developmental plasticity such that progeny from an individual may either develop via a direct (homogonic) route, where the developing larvae are infective to new hosts, or an indirect (heterogonic) route, where the larvae develop into free-living, dioecious adults that undergo at least one bout of sexual reproduction outside the host, before producing offspring that develop into infective larvae. The model correctly predicts a number of observed features of the parasite's behavior and shows that this plasticity may be adaptive such that pure homogonic development, pure heterogonic development, or a mixed strategy may be optimal depending on the prevailing environmental conditions, both within and outside the host. Importantly, our results depend only on the benefits of an extra round of reproduction in the environment external to the host and not on benefits to sexual reproduction through the purging of deleterious mutation or the generation of novel, favorable genotypes. The ESS framework presented here provides a powerful, general approach to predict how macroparasites, the agents of many of the world's most important infectious diseases, will evolve in response to the various selection pressures imposed by different control regimes in the future.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验