Suppr超能文献

淀粉样β蛋白在海马体长期增强过程中可阻止钙/钙调蛋白依赖性蛋白激酶II的激活以及α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体的磷酸化。

Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation.

作者信息

Zhao Danyun, Watson Joseph B, Xie Cui-Wei

机构信息

Department of Psychiatry and Biobehavioral Sciences, Neuropsychiatric Institute, University of California-Los Angeles, Los Angeles, CA 90024, USA.

出版信息

J Neurophysiol. 2004 Nov;92(5):2853-8. doi: 10.1152/jn.00485.2004. Epub 2004 Jun 22.

Abstract

Accumulation of amyloid beta-peptides (Abeta) in the brain has been linked with memory loss in Alzheimer's disease and its animal models. However, the synaptic mechanism by which Abeta causes memory deficits remains unclear. We previously showed that acute application of Abeta inhibited long-term potentiation (LTP) in the hippocampal perforant path via activation of calcineurin, a Ca2+ -dependent protein phosphatase. This study examined whether Abeta could also inhibit Ca2+/calmodulin dependent protein kinase II (CaMKII), further disrupting the dynamic balance between protein kinase and phosphatase during synaptic plasticity. Immunoblot analysis was conducted to measure autophosphorylation of CaMKII at Thr286 and phosphorylation of the GluR1 subunit of AMPA receptors in single rat hippocampal slices. A high-frequency tetanus applied to the perforant path significantly increased CaMKII autophosphorylation and subsequent phosphorylation of GluR1 at Ser831, a CaMKII-dependent site, in the dentate area. Acute application of Abeta1-42 inhibited dentate LTP and associated phosphorylation processes, but was without effect on phosphorylation of GluR1 at Ser845, a protein kinase A-dependent site. These results suggest that activity-dependent CaMKII autophosphorylation and AMPA receptor phosphorylation are essential for dentate LTP. Disruption of such mechanisms could directly contribute to Abeta-induced deficits in hippocampal synaptic plasticity and memory.

摘要

淀粉样β肽(Aβ)在大脑中的积累与阿尔茨海默病及其动物模型中的记忆丧失有关。然而,Aβ导致记忆缺陷的突触机制仍不清楚。我们之前表明,急性应用Aβ通过激活钙调神经磷酸酶(一种Ca2+依赖性蛋白磷酸酶)抑制海马穿通通路中的长时程增强(LTP)。本研究探讨了Aβ是否也能抑制Ca2+/钙调蛋白依赖性蛋白激酶II(CaMKII),进一步破坏突触可塑性期间蛋白激酶和磷酸酶之间的动态平衡。进行免疫印迹分析以测量单只大鼠海马切片中CaMKII在Thr286处的自磷酸化以及AMPA受体GluR1亚基的磷酸化。对穿通通路施加高频强直刺激可显著增加齿状回区域中CaMKII的自磷酸化以及随后GluR1在Ser831(一个CaMKII依赖性位点)处的磷酸化。急性应用Aβ1-42抑制齿状回LTP和相关的磷酸化过程,但对GluR1在Ser845(一个蛋白激酶A依赖性位点)处的磷酸化没有影响。这些结果表明,活性依赖性CaMKII自磷酸化和AMPA受体磷酸化对于齿状回LTP至关重要。这种机制的破坏可能直接导致Aβ诱导的海马突触可塑性和记忆缺陷。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验