Szecsody J E, Girvin D C, Devary B J, Campbell J A
Pacific Northwest National Laboratory, Geosciences Department, Battelle, P.O. Box 999, MS K3-61 Richland, WA 99352, USA.
Chemosphere. 2004 Aug;56(6):593-610. doi: 10.1016/j.chemosphere.2004.04.028.
The abiotic sorption and oxic degradation processes that control the fate of the explosive CL-20, Hexanitrohexaazaisowurtzitane, in the subsurface environment were investigated to determine the potential for vadose and groundwater contamination. Sorption of aqueous CL-20 is relatively small (K(d) = 0.02-3.83 cm3 g(-1) for 7 sediments and 12 minerals), which results in only slight retardation relative to water movement. Thus, CL-20 could move quickly through unsaturated and saturated sediments of comparable composition to groundwater, similar to the subsurface behavior of RDX. CL-20 sorption was mainly to mineral surfaces of the sediments, and the resulting isotherm was nonlinear. CL-20 abiotically degrades in oxic environments at slow rates (i.e., 10s to 100s of hours) with a wide variety of minerals, but at fast rates (i.e., minutes) in the presence of 2:1 phyllosilicate clays (hectorite, montmorillonite, nontronite), micas (biotite, illite), and specific oxides (MnO2 and the ferrous-ferric iron oxide magnetite). High concentrations of surface ferrous iron in a dithionite reduced sediment degraded CL-20 the fastest (half-life < 0.05 h), but 2:1 clays containing no structural or adsorbed ferrous iron (hectorite) could also quickly degrade CL-20 (half-life < 0.2 h). CL-20 degradation rates were slower in natural sediments (half-life 3-800 h) compared to minerals. Sediments with slow degradation rates and small sorption would exhibit the highest potential for deep subsurface migration. Products of CL-20 oxic degradation included three high molecular weight compounds and anions (nitrite and formate). The 2-3.5 moles of nitrite produced suggest CL-20 nitro-groups are degraded, and the amount of formate produced (0.2-1.2 moles) suggests the CL-20 cage structure is broken in some sediments. Identification of further degradation products and CL-20 mineralization rates is needed to fully assess the impact of these CL-20 transformation rates on the risk of CL-20 (and degradation product) subsurface movement.
研究了控制炸药CL - 20(六硝基六氮杂异伍兹烷)在地下环境中归宿的非生物吸附和有氧降解过程,以确定其在渗流带和地下水中污染的可能性。CL - 20在水中的吸附相对较小(7种沉积物和12种矿物的K(d) = 0.02 - 3.83 cm3 g(-1)),这导致其相对于水流的阻滞作用仅轻微。因此,CL - 20能快速穿过与地下水成分相当的不饱和和饱和沉积物,类似于RDX在地下的行为。CL - 20的吸附主要发生在沉积物的矿物表面,所得等温线为非线性。CL - 20在有氧环境中与多种矿物发生非生物降解的速率较慢(即数十到数百小时),但在2:1层状硅酸盐粘土(锂蒙脱石、蒙脱石、绿脱石)、云母(黑云母、伊利石)以及特定氧化物(MnO2和亚铁 - 三价铁氧化物磁铁矿)存在时降解速率较快(即数分钟)。连二亚硫酸盐还原沉积物中高浓度的表面亚铁能最快地降解CL - 20(半衰期< 0.05 h),但不含结构或吸附亚铁的2:1粘土(锂蒙脱石)也能快速降解CL - 20(半衰期< 0.2 h)。与矿物相比,CL - 20在天然沉积物中的降解速率较慢(半衰期3 - 800 h)。降解速率慢且吸附小的沉积物在深部地下迁移的可能性最高。CL - 20有氧降解的产物包括三种高分子量化合物和阴离子(亚硝酸盐和甲酸盐)。产生的2 - 3.5摩尔亚硝酸盐表明CL - 20的硝基被降解,产生的甲酸盐量(0.2 - 1.2摩尔)表明在某些沉积物中CL - 20的笼状结构被破坏。需要进一步鉴定降解产物和CL - 20的矿化速率,以全面评估这些CL - 20转化速率对CL - 20(及其降解产物)地下迁移风险的影响。