Moore Richard A, Reckseidler-Zenteno Shauna, Kim Heenam, Nierman William, Yu Yan, Tuanyok Apichai, Warawa Jonathan, DeShazer David, Woods Donald E
Department of Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary Health Sciences Centre, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1.
Infect Immun. 2004 Jul;72(7):4172-87. doi: 10.1128/IAI.72.7.4172-4187.2004.
Burkholderia pseudomallei is the causative agent of melioidosis. Burkholderia thailandensis is a closely related species that can readily utilize l-arabinose as a sole carbon source, whereas B. pseudomallei cannot. We used Tn5-OT182 mutagenesis to isolate an arabinose-negative mutant of B. thailandensis. Sequence analysis of regions flanking the transposon insertion revealed the presence of an arabinose assimilation operon consisting of nine genes. Analysis of the B. pseudomallei chromosome showed a deletion of the operon from this organism. This deletion was detected in all B. pseudomallei and Burkholderia mallei strains investigated. We cloned the B. thailandensis E264 arabinose assimilation operon and introduced the entire operon into the chromosome of B. pseudomallei 406e via homologous recombination. The resultant strain, B. pseudomallei SZ5028, was able to utilize l-arabinose as a sole carbon source. Strain SZ5028 had a significantly higher 50% lethal dose for Syrian hamsters compared to the parent strain 406e. Microarray analysis revealed that a number of genes in a type III secretion system were down-regulated in strain SZ5028 when cells were grown in l-arabinose, suggesting a regulatory role for l-arabinose or a metabolite of l-arabinose. These results suggest that the ability to metabolize l-arabinose reduces the virulence of B. pseudomallei and that the genes encoding arabinose assimilation may be considered antivirulence genes. The increase in virulence associated with the loss of these genes may have provided a selective advantage for B. pseudomallei as these organisms adapted to survival in animal hosts.
类鼻疽杆菌是类鼻疽病的病原体。泰国伯克霍尔德菌是一种密切相关的菌种,它能够轻易地将L-阿拉伯糖作为唯一碳源利用,而类鼻疽杆菌则不能。我们利用Tn5-OT182诱变技术分离出了一株泰国伯克霍尔德菌的阿拉伯糖阴性突变体。对转座子插入位点侧翼区域的序列分析显示,存在一个由九个基因组成的阿拉伯糖同化操纵子。对类鼻疽杆菌染色体的分析表明,该操纵子在这种细菌中发生了缺失。在所研究的所有类鼻疽杆菌和鼻疽杆菌菌株中都检测到了这种缺失。我们克隆了泰国伯克霍尔德菌E264的阿拉伯糖同化操纵子,并通过同源重组将整个操纵子导入类鼻疽杆菌406e的染色体中。得到的菌株类鼻疽杆菌SZ5028能够将L-阿拉伯糖作为唯一碳源利用。与亲本菌株406e相比,菌株SZ5028对叙利亚仓鼠的50%致死剂量显著更高。微阵列分析显示,当细胞在L-阿拉伯糖中生长时,III型分泌系统中的一些基因在菌株SZ5028中表达下调,这表明L-阿拉伯糖或其代谢产物具有调节作用。这些结果表明代谢L-阿拉伯糖的能力会降低类鼻疽杆菌的毒力,编码阿拉伯糖同化的基因可能被视为抗毒力基因。与这些基因缺失相关的毒力增加可能为类鼻疽杆菌在适应动物宿主生存过程中提供了选择优势。