Yang Fan, Bleich David
Susan and Leslie Gonda (Goldschmied) Diabetes & Genetic Research Center, Department of Diabetes, Endocrinology, & Metabolism, City of Hope National Medical Center, Duarte, California 91010, USA.
J Biol Chem. 2004 Aug 20;279(34):35403-11. doi: 10.1074/jbc.M404055200. Epub 2004 Jun 21.
Prostaglandin E(2) (PGE(2)) has been shown to negatively affect pancreatic beta-cell function, and its inducible synthesis is mediated in part by cycloxygenase-2 (COX-2). Regulation of basal and inducible COX-2 gene expression in pancreatic beta-cells is not fully understood. In this report, we used pancreatic beta-cells (RINm5F) to explore the molecular mechanisms regulating COX-2 promoter activity. Through deletion analysis of a -907/+70-bp 5' upstream region of the mouse COX-2 gene, we identified an inhibition domain (-804/-371) and an activation domain (-371/+70). The highest promoter activity was seen when the promoter was reduced to -371 bp. Several cis-acting elements were selected for site-directed mutations in the activation domain. We identified three sites that were essential for basal COX-2 promoter activity: 1) CCAAT/enhancer-binding protein (C/EBP), 2) aryl hydrocarbon receptor (AhR), and 3) cAMP response element-binding protein (CREB). Single mutation of each individual site inhibited 70-80% of basal COX-2 promoter activity. Double mutation of the AhR and CREB-binding sites showed synergy in repressing COX-2 promoter activity as did mutation of all three sites. We demonstrated that the transcription factors from RINm5F nuclear extracts specifically bound to oligonucleotides containing C/EBP, AhR, or CREB consensus sites. Forskolin, an activator of adenyl cyclase, increased COX-2 promoter activity via the CREB site. COX-2 promoter activity was also increased by 2,3,7,8-tetrachlorodibenzo-p-dioxin, an AhR activator, through the AhR site. Both forskolin and 2,3,7,8-tetrachlorodibenzo-p-dioxin increased COX-2 mRNA in a dose-dependent manner. We consider these three transcriptional regulators of COX-2 expression to be potential targets for the prevention of beta-cell damage mediated by PGE(2).
前列腺素E(2)(PGE(2))已被证明会对胰腺β细胞功能产生负面影响,其诱导性合成部分由环氧化酶-2(COX-2)介导。胰腺β细胞中基础和诱导性COX-2基因表达的调控尚未完全明确。在本报告中,我们使用胰腺β细胞(RINm5F)来探究调节COX-2启动子活性的分子机制。通过对小鼠COX-2基因-907/+70 bp 5'上游区域进行缺失分析,我们确定了一个抑制结构域(-804/-371)和一个激活结构域(-371/+70)。当启动子缩短至-371 bp时,观察到最高的启动子活性。在激活结构域中选择了几个顺式作用元件进行定点突变。我们确定了三个对基础COX-2启动子活性至关重要的位点:1)CCAAT/增强子结合蛋白(C/EBP),2)芳烃受体(AhR),3)环磷酸腺苷反应元件结合蛋白(CREB)。每个位点的单突变抑制了基础COX-2启动子活性的70-80%。AhR和CREB结合位点的双突变在抑制COX-2启动子活性方面表现出协同作用,所有三个位点的突变也是如此。我们证明,来自RINm5F核提取物的转录因子特异性结合到含有C/EBP、AhR或CREB共有位点的寡核苷酸上。腺苷酸环化酶激活剂福斯可林通过CREB位点增加COX-2启动子活性。AhR激活剂2,3,7,8-四氯二苯并对二恶英也通过AhR位点增加COX-2启动子活性。福斯可林和2,3,7,8-四氯二苯并对二恶英均以剂量依赖的方式增加COX-2 mRNA。我们认为这三种COX-2表达的转录调节因子是预防由PGE(2)介导的β细胞损伤的潜在靶点。