Suppr超能文献

复杂健康经济模型中信息价值分析的方法:干扰素-β和醋酸格拉替雷用于多发性硬化症的健康经济学进展

Methods for expected value of information analysis in complex health economic models: developments on the health economics of interferon-beta and glatiramer acetate for multiple sclerosis.

作者信息

Tappenden P, Chilcott J B, Eggington S, Oakley J, McCabe C

机构信息

School of Health and Related Research, University of Sheffield, UK.

出版信息

Health Technol Assess. 2004 Jun;8(27):iii, 1-78. doi: 10.3310/hta8270.

Abstract

OBJECTIVES

To develop methods for performing expected value of perfect information (EVPI) analysis in computationally expensive models and to report on the developments on the health economics of interferon-beta and glatiramer acetate in the management of multiple sclerosis (MS) using this methodological framework.

DATA SOURCES

Electronic databases and Internet resources, reference lists of relevant articles.

REVIEW METHODS

A methodological framework was developed for undertaking EVPI analysis for complex models. The framework identifies conditions whereby EVPI may be calculated numerically, where the one-level algorithm sufficiently approximates the two-level algorithm, and whereby metamodelling techniques may accurately approximate the original simulation model. Metamodelling techniques, including linear regression, neural networks and Gaussian processes (GP), were systematically reviewed and critically appraised. Linear regression metamodelling, GP metamodelling and the one-level EVPI approximation were used to estimate partial EVPIs using the ScHARR MS cost-effectiveness model.

RESULTS

The review of metamodelling approaches suggested that in general the simpler techniques such as linear regression may be easier to implement, as they require little specialist expertise although may provide only limited predictive accuracy. More complex methods such as Gaussian process metamodelling and neural networks tend to use less-restrictive assumptions concerning the relationship between the model inputs and net benefits, and therefore may permit greater accuracy in estimating EVPIs. Assuming independent treatment efficacy, the 'per patient' EVPI for all uncertainty parameters within the ScHARR MS model is 8855 British pounds. This leads to a population EVPI of 86,208,936 British pounds, which represents the upper estimate for the overall EVPI over 10 years. Assuming all treatment efficacies are perfectly correlated, the overall per patient EVPI is 4271 British pounds. This leads to a population EVPI of 41,581,273 British pounds, which represents the lower estimate for the overall EVPI over 10 years. The partial EVPI analysis, undertaken using both the linear regression metamodel and Gaussian process metamodel clearly, suggests that further research is indicated on the long-term impact of these therapies on disease progression, the proportion of patients dropping off therapy and the relationship between the EDSS, quality of life and costs of care.

CONCLUSIONS

The applied methodology points towards using more sophisticated metamodelling approaches in order to obtain greater accuracy in EVPI estimation. Programming requirements, software availability and statistical accuracy should be considered when choosing between metamodelling techniques. Simpler, more accessible techniques are open to greater predictive error, whilst sophisticated methodologies may enhance accuracy within non-linear models, but are considerably more difficult to implement and may require specialist expertise. These techniques have been applied in only a limited number of cases hence their suitability for use in EVPI analysis has not yet been demonstrated. A number of areas requiring further research have been highlighted. Further clinical research is required concerning the relationship between the EDSS, costs of care and health outcomes, the rates at which patients drop off therapy and in particular the impact of disease-modifying therapies on the progression of MS. Further methodological research is indicated concerning the inclusion of epidemiological population parameters within the sensitivity analysis; the development of criteria for selecting a metamodelling approach; the application of metamodelling techniques within health economic models and in the specific application to EVI analyses; and the use of metamodelling for EVSI and ENBS analysis.

摘要

目标

开发在计算成本高昂的模型中进行完美信息期望值(EVPI)分析的方法,并报告使用此方法框架对干扰素-β和醋酸格拉替雷在多发性硬化症(MS)管理中的卫生经济学发展情况。

数据来源

电子数据库和互联网资源、相关文章的参考文献列表。

综述方法

开发了一个用于对复杂模型进行EVPI分析的方法框架。该框架确定了可以通过数值计算EVPI的条件,即一级算法足以近似二级算法的条件,以及元建模技术可以准确近似原始模拟模型的条件。对包括线性回归、神经网络和高斯过程(GP)在内的元建模技术进行了系统综述和严格评估。使用线性回归元建模、GP元建模和一级EVPI近似,通过ScHARR MS成本效益模型估计部分EVPI。

结果

对元建模方法的综述表明,一般来说,像线性回归这样较简单的技术可能更易于实施,因为它们几乎不需要专业知识,尽管可能只能提供有限的预测准确性。更复杂的方法,如高斯过程元建模和神经网络,往往对模型输入和净效益之间的关系使用限制较少的假设,因此在估计EVPI时可能允许更高的准确性。假设治疗效果独立,ScHARR MS模型中所有不确定性参数的“每位患者”EVPI为8855英镑。这导致总体EVPI为86,208,936英镑,这代表了10年期间总体EVPI的上限估计。假设所有治疗效果完全相关,总体每位患者的EVPI为4271英镑。这导致总体EVPI为41,581,273英镑,这代表了10年期间总体EVPI的下限估计。使用线性回归元模型和高斯过程元模型进行的部分EVPI分析清楚地表明,需要进一步研究这些疗法对疾病进展的长期影响、患者退出治疗的比例以及扩展残疾状态量表(EDSS)、生活质量和护理成本之间的关系。

结论

应用的方法表明,为了在EVPI估计中获得更高的准确性,应使用更复杂的元建模方法。在选择元建模技术时,应考虑编程要求、软件可用性和统计准确性。更简单、更易获取的技术更容易出现预测误差,而复杂的方法可能会提高非线性模型中的准确性,但实施起来要困难得多,可能需要专业知识。这些技术仅在有限的案例中应用过,因此它们在EVPI分析中的适用性尚未得到证明。突出了一些需要进一步研究的领域。需要进一步开展临床研究,以探讨EDSS、护理成本和健康结果之间的关系、患者退出治疗的比率,特别是疾病修饰疗法对MS进展的影响。还需要进一步开展方法学研究,包括在敏感性分析中纳入流行病学人群参数;制定选择元建模方法的标准;在卫生经济模型中应用元建模技术以及在EVI分析中的具体应用;以及将元建模用于EVSI和ENBS分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验