Claude Jean-Baptiste, Suhre Karsten, Notredame Cédric, Claverie Jean-Michel, Abergel Chantal
Information Génomique & Structurale (UPR CNRS 2589), Institut de Biologie Structurale et Microbiologie, 31, chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W606-9. doi: 10.1093/nar/gkh400.
Molecular replacement (MR) is the method of choice for X-ray crystallography structure determination when structural homologues are available in the Protein Data Bank (PDB). Although the success rate of MR decreases sharply when the sequence similarity between template and target proteins drops below 35% identical residues, it has been found that screening for MR solutions with a large number of different homology models may still produce a suitable solution where the original template failed. Here we present the web tool CaspR, implementing such a strategy in an automated manner. On input of experimental diffraction data, of the corresponding target sequence and of one or several potential templates, CaspR executes an optimized molecular replacement procedure using a combination of well-established stand-alone software tools. The protocol of model building and screening begins with the generation of multiple structure-sequence alignments produced with T-COFFEE, followed by homology model building using MODELLER, molecular replacement with AMoRe and model refinement based on CNS. As a result, CaspR provides a progress report in the form of hierarchically organized summary sheets that describe the different stages of the computation with an increasing level of detail. For the 10 highest-scoring potential solutions, pre-refined structures are made available for download in PDB format. Results already obtained with CaspR and reported on the web server suggest that such a strategy significantly increases the fraction of protein structures which may be solved by MR. Moreover, even in situations where standard MR yields a solution, pre-refined homology models produced by CaspR significantly reduce the time-consuming refinement process. We expect this automated procedure to have a significant impact on the throughput of large-scale structural genomics projects. CaspR is freely available at http://igs-server.cnrs-mrs.fr/Caspr/.
当蛋白质数据库(PDB)中有结构同源物时,分子置换(MR)是X射线晶体学结构测定的首选方法。尽管当模板蛋白与目标蛋白之间的序列相似性降至低于35%的相同残基时,MR的成功率会急剧下降,但已发现用大量不同的同源模型筛选MR解决方案仍可能在原始模板失败的情况下产生合适的解决方案。在此,我们展示了网络工具CaspR,它以自动化方式实施这样一种策略。输入实验衍射数据、相应的目标序列以及一个或几个潜在模板后,CaspR使用成熟的独立软件工具组合执行优化的分子置换程序。模型构建和筛选协议始于用T-COFFEE生成多个结构-序列比对,接着使用MODELLER进行同源建模、用AMoRe进行分子置换以及基于CNS进行模型优化。结果,CaspR以分层组织的汇总表形式提供进度报告,这些汇总表以不断增加的详细程度描述计算的不同阶段。对于得分最高的10个潜在解决方案,可下载以PDB格式提供的预优化结构。在网络服务器上报告的已用CaspR获得的结果表明,这样一种策略显著增加了可通过MR解析的蛋白质结构的比例。此外,即使在标准MR产生解决方案的情况下,CaspR产生的预优化同源模型也显著减少了耗时的优化过程。我们预计这种自动化程序将对大规模结构基因组学项目的通量产生重大影响。CaspR可在http://igs-server.cnrs-mrs.fr/Caspr/免费获取。