Suppr超能文献

Turnover of tubulin in ciliary outer doublet microtubules.

作者信息

Stephens R E

机构信息

Department of Physiology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.

出版信息

Cell Struct Funct. 1999 Oct;24(5):413-8. doi: 10.1247/csf.24.413.

Abstract

Previous pulse-chase labeling studies have shown that structural proteins incorporate into fully assembled sea urchin embryonic cilia at rates approaching those of full regeneration. When all background ciliogenesis was suppressed by taxol, the turnover of most proteins, including tubulin, continued. The present study utilized chemical dissection to explore the route of tubulin incorporation in the presence of taxol and also in steady-state cilia from prism stage embryos. Surprisingly, in cilia from untreated embryos, the most heavily labeled tubulin was found in the most stable portion of the doublet microtubles, the junctional protofilaments. With taxol, this preferential incorporation was suppressed, although control-level turnover still took place in the remainder of the doublet. This paradoxical result was confirmed by pulse-chase labeling and immediately isolating steady-state cilia, then isolating two additional crops of cilia regenerated, respectively, from pools of high and then decreased label. In each case, the level of label occurring in the tubulin from the junctional protofilaments, compared with that from the remainder of the doublet, correlated with the level of pool label from which it must exchange or assemble. These data indicate that ciliary outer doublet microtubules are dynamic structures and that the junctional region is not inert. Plausible mechanisms of incorporation and turnover of tubulin in fully-assembled, fully-motile cilia can now be assessed with regared to recent discoveries, particularly intraflagellar transport, distal tip incorporation, and treadmilling.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验