Suppr超能文献

Importance of valine 567 in substrate recognition and oxidation by neuronal nitric oxide synthase.

作者信息

Moreau Magali, Takahashi Hiroto, Sari Marie-Agnes, Boucher Jean-Luc, Sagami Ikuko, Shimizu Toru, Mansuy Daniel

机构信息

UMR 8601 CNRS, Université Paris V R. Descartes, 45 Rue des Saints-Pères, 75270 Paris Cedex 06, France.

出版信息

J Inorg Biochem. 2004 Jul;98(7):1200-9. doi: 10.1016/j.jinorgbio.2004.03.015.

Abstract

Nitric oxide (NO) is synthesised by a two-step oxidation of -arginine (L-Arg) in the active site of nitric oxide synthase (NOS) with formation of an intermediate, N omega-hydroxy-L-Arg (NOHA). Crystal structures of NOSs have shown the importance of an active-site Val567 residue (numbered for rat neuronal NOS, nNOS) interacting with non-amino acid substrates. To investigate the role of this Val residue in substrate recognition and NO-formation activity by nNOS, we generated and purified four Val567 mutants of nNOS, Val567Leu, Val567Phe, Val567Arg and Val567Glu. We characterized these proteins and tested their ability to generate NO from the oxidation of natural substrates L-Arg and NOHA, and from N-hydroxyguanidines previously identified as alternative substrates for nNOS. The Val567Leu mutant displayed lower NO formation activities than the wild type (WT) in the presence of all tested compounds. Surprisingly, the Val567Phe mutant formed low amounts of NO only from NOHA. These two mutants displayed lower affinity for L-Arg and NOHA than the WT protein. Val576Glu and Val567Arg mutants were much less stable and did not lead to any formation of NO. These results suggest that Val567 is an important residue for preserving the integrity of the active site, for substrate binding, and subsequently for NO-formation in nNOS.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验