Suppr超能文献

节律性神经网络的系统发生、个体发生及成年期适应性可塑性:一种共同的神经调节机制?

Phylogenetic, ontogenetic and adult adaptive plasticity of rhythmic neural networks: a common neuromodulatory mechanism?

作者信息

Fénelon V S, Le Feuvre Y, Meyrand P

机构信息

CNRS UMR 5816, University of Bordeaux I, Avenue des Facultés, 33405, Talence, France.

出版信息

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2004 Sep;190(9):691-705. doi: 10.1007/s00359-004-0533-4. Epub 2004 Jun 25.

Abstract

Neuromodulatory inputs are known to play a major role in the adaptive plasticity of rhythmic neural networks in adult animals. Using the crustacean stomatogastric nervous system, we have investigated the role of modulatory inputs in the development of rhythmic neural networks. We found that the same neuronal population is organised into a single network in the embryo, as opposed to the two networks present in the adult. However, these adult networks pre-exist in the embryo and can be unmasked by specific alterations of the neuromodulatory environment. Similarly, adult networks may switch back to the embryonic phenotype by manipulating neuromodulatory inputs. During development, we found that the early established neuromodulatory population display alteration in expressed neurotransmitter phenotypes, and that although the population of modulatory neurones is established early, with morphology and projection pattern similar to adult ones, their neurotransmitter phenotype may appear gradually. Therefore the abrupt switch from embryonic to adult network expression occurring at metamorphosis may be due to network reconfiguration in response to changes in modulatory input, as found in adult adaptive plasticity. Strikingly, related crustacean species express different motor outputs using the same basic network circuitry, due to species-specific alteration in neuromodulatory substances within homologous projecting neurones. Therefore we propose that alterations within neuromodulatory systems to a given rhythmic neural network displaying the same basic circuitry may account for the generation of different motor outputs throughout development (ontogenetic plasticity), adulthood (adaptive plasticity) and evolution (phylogenetic plasticity).

摘要

已知神经调节输入在成年动物节律性神经网络的适应性可塑性中起主要作用。利用甲壳类动物的口胃神经系统,我们研究了调节输入在节律性神经网络发育中的作用。我们发现,与成体中存在的两个网络不同,同一神经元群体在胚胎中组织成一个单一网络。然而,这些成体网络在胚胎中预先存在,并且可以通过神经调节环境的特定改变而显现出来。同样,通过操纵神经调节输入,成体网络可能会切换回胚胎表型。在发育过程中,我们发现早期建立的神经调节群体在表达的神经递质表型上表现出改变,并且尽管调节神经元群体很早就建立起来了,其形态和投射模式与成体相似,但其神经递质表型可能会逐渐出现。因此,在变态时发生的从胚胎网络表达向成体网络表达的突然转变可能是由于网络重新配置以响应调节输入的变化,就像在成体适应性可塑性中发现的那样。引人注目的是,相关的甲壳类物种利用相同的基本网络电路表达不同的运动输出,这是由于同源投射神经元内神经调节物质的物种特异性改变。因此,我们提出,对于显示相同基本电路的给定节律性神经网络,神经调节系统内的改变可能解释了在整个发育过程(个体发育可塑性)、成年期(适应性可塑性)和进化过程(系统发育可塑性)中不同运动输出的产生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验