Suppr超能文献

神经和代谢网络中的边缘脆弱性。

Edge vulnerability in neural and metabolic networks.

作者信息

Kaiser Marcus, Hilgetag Claus C

出版信息

Biol Cybern. 2004 May;90(5):311-7. doi: 10.1007/s00422-004-0479-1. Epub 2004 May 10.

Abstract

Biological networks, such as cellular metabolic pathways or networks of corticocortical connections in the brain, are intricately organized, yet remarkably robust toward structural damage. Whereas many studies have investigated specific aspects of robustness, such as molecular mechanisms of repair, this article focuses more generally on how local structural features in networks may give rise to their global stability. In many networks the failure of single connections may be more likely than the extinction of entire nodes, yet no analysis of edge importance (edge vulnerability) has been provided so far for biological networks. We tested several measures for identifying vulnerable edges and compared their prediction performance in biological and artificial networks. Among the tested measures, edge frequency in all shortest paths of a network yielded a particularly high correlation with vulnerability and identified intercluster connections in biological but not in random and scale-free benchmark networks. We discuss different local and global network patterns and the edge vulnerability resulting from them.

摘要

生物网络,如细胞代谢途径或大脑中的皮质-皮质连接网络,组织复杂,但对结构损伤具有显著的鲁棒性。尽管许多研究调查了鲁棒性的特定方面,如修复的分子机制,但本文更广泛地关注网络中的局部结构特征如何导致其全局稳定性。在许多网络中,单个连接的失效可能比整个节点的消失更有可能发生,但到目前为止,尚未对生物网络进行边重要性(边脆弱性)分析。我们测试了几种识别脆弱边的方法,并比较了它们在生物网络和人工网络中的预测性能。在测试的方法中,网络所有最短路径中的边频率与脆弱性具有特别高的相关性,并识别出生物网络中的簇间连接,但在随机和无标度基准网络中未识别出。我们讨论了不同的局部和全局网络模式以及由此产生的边脆弱性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验