Suppr超能文献

拓扑解释的一般理论与解释的不对称性。

General theory of topological explanations and explanatory asymmetry.

机构信息

University Bordeaux Montaigne, Department of Philosophy and EA 4574 'Sciences, Philosophie, Humanités' (SPH) at University of Bordeaux, Allée Geoffroy Saint-Hilaire, Bâtiment B2, 33615 Pessac cedex, France.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190321. doi: 10.1098/rstb.2019.0321. Epub 2020 Feb 24.

Abstract

In this paper, I present a general theory of topological explanations, and illustrate its fruitfulness by showing how it accounts for explanatory asymmetry. My argument is developed in three steps. In the first step, I show what it is for some topological property to explain some physical or dynamical property . Based on that, I derive three key criteria of successful topological explanations: a criterion concerning the facticity of topological explanations, i.e. what makes it true of a particular system; a criterion for describing counterfactual dependencies in two explanatory modes, i.e. the vertical and the horizontal and, finally, a third perspectival one that tells us when to use the vertical and when to use the horizontal mode. In the second step, I show how this general theory of topological explanations accounts for explanatory asymmetry in both the vertical and horizontal explanatory modes. Finally, in the third step, I argue that this theory is universally applicable across biological sciences, which helps in unifying essential concepts of biological networks. This article is part of the theme issue 'Unifying the essential concepts of biological networks: biological insights and philosophical foundations'.

摘要

本文提出了一种拓扑解释的一般理论,并通过展示它如何解释解释的不对称性来说明其有效性。我的论证分为三个步骤。在第一步中,我展示了某些拓扑性质如何解释某些物理或动力学性质。在此基础上,我推导出了成功的拓扑解释的三个关键标准:一个涉及拓扑解释真实性的标准,即是什么使得特定系统成为真实的;一个用于描述两种解释模式(垂直和水平)中的反事实依赖关系的标准,最后,还有一个第三个视角的标准,它告诉我们何时使用垂直模式,何时使用水平模式。在第二步中,我展示了这种拓扑解释的一般理论如何解释垂直和水平解释模式中的解释不对称性。最后,在第三步中,我认为该理论在生物科学中具有普遍适用性,有助于统一生物网络的基本概念。本文是主题为“统一生物网络的基本概念:生物学见解和哲学基础”的一部分。

相似文献

1
General theory of topological explanations and explanatory asymmetry.拓扑解释的一般理论与解释的不对称性。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190321. doi: 10.1098/rstb.2019.0321. Epub 2020 Feb 24.
3
Network explanations and explanatory directionality.网络解释与解释的方向性。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190318. doi: 10.1098/rstb.2019.0318. Epub 2020 Feb 24.
4
Are topological explanations really free of mechanisms?拓扑解释真的没有机制吗?
Theory Biosci. 2021 Feb;140(1):97-105. doi: 10.1007/s12064-020-00336-0. Epub 2021 Jan 11.
6
Realizability and the varieties of explanation.可实现性与解释的多样性。
Stud Hist Philos Sci. 2018 Apr;68:37-50. doi: 10.1016/j.shpsa.2018.01.004. Epub 2018 Jan 20.
8
Network architectures supporting learnability.支持可学习性的网络架构。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190323. doi: 10.1098/rstb.2019.0323. Epub 2020 Feb 24.
9
Exploring modularity in biological networks.探索生物网络的模块性。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190316. doi: 10.1098/rstb.2019.0316. Epub 2020 Feb 24.

引用本文的文献

3
Integrating Philosophy of Understanding With the Cognitive Sciences.将理解哲学与认知科学相结合。
Front Syst Neurosci. 2022 Mar 10;16:764708. doi: 10.3389/fnsys.2022.764708. eCollection 2022.
6
Are topological explanations really free of mechanisms?拓扑解释真的没有机制吗?
Theory Biosci. 2021 Feb;140(1):97-105. doi: 10.1007/s12064-020-00336-0. Epub 2021 Jan 11.
7
Shifting levels of ecological network's analysis reveals different system properties.生态网络分析的层次转变揭示了不同的系统特性。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190326. doi: 10.1098/rstb.2019.0326. Epub 2020 Feb 24.
9
Hierarchy and levels: analysing networks to study mechanisms in molecular biology.层次和级别:分析网络以研究分子生物学中的机制。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190320. doi: 10.1098/rstb.2019.0320. Epub 2020 Feb 24.

本文引用的文献

2
Network explanations and explanatory directionality.网络解释与解释的方向性。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190318. doi: 10.1098/rstb.2019.0318. Epub 2020 Feb 24.
3
5
Controllability of structural brain networks.大脑结构网络的可控性
Nat Commun. 2015 Oct 1;6:8414. doi: 10.1038/ncomms9414.
6
Is the brain really a small-world network?大脑真的是一个小世界网络吗?
Brain Struct Funct. 2016 May;221(4):2361-6. doi: 10.1007/s00429-015-1035-6. Epub 2015 Apr 18.
7
Network hubs in the human brain.人脑中的网络枢纽。
Trends Cogn Sci. 2013 Dec;17(12):683-96. doi: 10.1016/j.tics.2013.09.012.
8
Edge vulnerability in neural and metabolic networks.神经和代谢网络中的边缘脆弱性。
Biol Cybern. 2004 May;90(5):311-7. doi: 10.1007/s00422-004-0479-1. Epub 2004 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验