Jackson Kara D, Starkey Melissa, Kremer Stefanie, Parsek Matthew R, Wozniak Daniel J
Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1064, USA.
J Bacteriol. 2004 Jul;186(14):4466-75. doi: 10.1128/JB.186.14.4466-4475.2004.
Bacteria inhabiting biofilms usually produce one or more polysaccharides that provide a hydrated scaffolding to stabilize and reinforce the structure of the biofilm, mediate cell-cell and cell-surface interactions, and provide protection from biocides and antimicrobial agents. Historically, alginate has been considered the major exopolysaccharide of the Pseudomonas aeruginosa biofilm matrix, with minimal regard to the different functions polysaccharides execute. Recent chemical and genetic studies have demonstrated that alginate is not involved in the initiation of biofilm formation in P. aeruginosa strains PAO1 and PA14. We hypothesized that there is at least one other polysaccharide gene cluster involved in biofilm development. Two separate clusters of genes with homology to exopolysaccharide biosynthetic functions were identified from the annotated PAO1 genome. Reverse genetics was employed to generate mutations in genes from these clusters. We discovered that one group of genes, designated psl, are important for biofilm initiation. A PAO1 strain with a disruption of the first two genes of the psl cluster (PA2231 and PA2232) was severely compromised in biofilm initiation, as confirmed by static microtiter and continuous culture flow cell and tubing biofilm assays. This impaired biofilm phenotype could be complemented with the wild-type psl sequences and was not due to defects in motility or lipopolysaccharide biosynthesis. These results implicate an as yet unknown exopolysaccharide as being required for the formation of the biofilm matrix. Understanding psl-encoded exopolysaccharide expression and protection in biofilms will provide insight into the pathogenesis of P. aeruginosa in cystic fibrosis and other infections involving biofilms.
生活在生物膜中的细菌通常会产生一种或多种多糖,这些多糖提供了一个水合支架,以稳定和强化生物膜的结构,介导细胞间和细胞与表面的相互作用,并提供抵御杀菌剂和抗菌剂的保护。从历史上看,藻酸盐一直被认为是铜绿假单胞菌生物膜基质的主要胞外多糖,而对多糖所执行的不同功能关注甚少。最近的化学和遗传学研究表明,藻酸盐并不参与铜绿假单胞菌PAO1和PA14菌株生物膜形成的起始过程。我们推测,至少还有一个其他的多糖基因簇参与生物膜的发育。从注释的PAO1基因组中鉴定出两个与胞外多糖生物合成功能具有同源性的独立基因簇。采用反向遗传学方法在这些基因簇中的基因中产生突变。我们发现,一组名为psl的基因对于生物膜的起始很重要。通过静态微量滴定、连续培养流动小室和管道生物膜试验证实,psl基因簇的前两个基因(PA2231和PA2232)被破坏的PAO1菌株在生物膜起始过程中受到严重损害。这种受损的生物膜表型可以用野生型psl序列进行互补,并且不是由于运动性或脂多糖生物合成方面的缺陷所致。这些结果表明,一种尚未知晓的胞外多糖是生物膜基质形成所必需的。了解psl编码的胞外多糖在生物膜中的表达和保护作用,将有助于深入了解铜绿假单胞菌在囊性纤维化和其他涉及生物膜的感染中的发病机制。