Suppr超能文献

铜绿假单胞菌胞外多糖 Psl 促进了对抗生物膜抑制剂聚山梨酯 80 的抗性。

Pseudomonas aeruginosa exopolysaccharide Psl promotes resistance to the biofilm inhibitor polysorbate 80.

机构信息

Department of Surgery (Ophthalmology), Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.

出版信息

Antimicrob Agents Chemother. 2012 Aug;56(8):4112-22. doi: 10.1128/AAC.00373-12. Epub 2012 May 14.

Abstract

Polysorbate 80 (PS80) is a nonionic surfactant and detergent that inhibits biofilm formation by Pseudomonas aeruginosa at concentrations as low as 0.001% and is well tolerated in human tissues. However, certain clinical and laboratory strains (PAO1) of P. aeruginosa are able to form biofilms in the presence of PS80. To better understand this resistance, we performed transposon mutagenesis with a PS80-resistant clinical isolate, PA738. This revealed that mutation of algC rendered PA738 sensitive to PS80 biofilm inhibition. AlgC contributes to the biosynthesis of the exopolysaccharides Psl and alginate, as well as lipopolysaccharide and rhamnolipid. Analysis of mutations downstream of AlgC in these biosynthetic pathways established that disruption of the psl operon was sufficient to render the PA738 and PAO1 strains sensitive to PS80-mediated biofilm inhibition. Increased levels of Psl production in the presence of arabinose in a strain with an arabinose-inducible psl promoter were correlated with increased biofilm formation in PS80. In P. aeruginosa strains MJK8 and ZK2870, known to produce both Pel and Psl, disruption of genes in the psl but not the pel operon conferred susceptibility to PS80-mediated biofilm inhibition. The laboratory strain PA14 does not produce Psl and does not form biofilms in PS80. However, when PA14 was transformed with a cosmid containing the psl operon, it formed biofilms in the presence of PS80. Taken together, these data suggest that production of the exopolysaccharide Psl by P. aeruginosa promotes resistance to the biofilm inhibitor PS80.

摘要

聚山梨酯 80(PS80)是一种非离子表面活性剂和清洁剂,它在低至 0.001%的浓度下就能抑制铜绿假单胞菌生物膜的形成,并且在人体组织中具有良好的耐受性。然而,某些临床和实验室菌株(PAO1)的铜绿假单胞菌能够在 PS80 的存在下形成生物膜。为了更好地理解这种抗性,我们使用一种 PS80 抗性的临床分离株 PA738 进行了转座子诱变。这表明 algC 的突变使 PA738 对 PS80 生物膜抑制敏感。AlgC 有助于合成胞外多糖 Psl 和藻酸盐,以及脂多糖和鼠李糖脂。在这些生物合成途径中分析 AlgC 下游的突变,确定 psl 操纵子的破坏足以使 PA738 和 PAO1 菌株对 PS80 介导的生物膜抑制敏感。在阿拉伯糖存在的情况下,阿拉伯糖诱导型 psl 启动子的菌株中 Psl 产量增加与 PS80 中生物膜形成增加相关。在已知产生 Pel 和 Psl 的铜绿假单胞菌菌株 MJK8 和 ZK2870 中,psl 操纵子而不是 pel 操纵子中的基因破坏赋予了对 PS80 介导的生物膜抑制的敏感性。实验室菌株 PA14 不产生 Psl 并且不在 PS80 中形成生物膜。然而,当 PA14 被含有 psl 操纵子的 cosmid 转化时,它在 PS80 的存在下形成生物膜。这些数据表明,铜绿假单胞菌产生的胞外多糖 Psl 促进了对生物膜抑制剂 PS80 的抗性。

相似文献

1
Pseudomonas aeruginosa exopolysaccharide Psl promotes resistance to the biofilm inhibitor polysorbate 80.
Antimicrob Agents Chemother. 2012 Aug;56(8):4112-22. doi: 10.1128/AAC.00373-12. Epub 2012 May 14.
4
Synthesis of multiple Pseudomonas aeruginosa biofilm matrix exopolysaccharides is post-transcriptionally regulated.
Environ Microbiol. 2012 Aug;14(8):1995-2005. doi: 10.1111/j.1462-2920.2012.02753.x. Epub 2012 Apr 19.
5
The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix.
Environ Microbiol. 2012 Aug;14(8):1913-28. doi: 10.1111/j.1462-2920.2011.02657.x. Epub 2011 Dec 19.
6
Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture.
Appl Environ Microbiol. 2011 Aug;77(15):5238-46. doi: 10.1128/AEM.00637-11. Epub 2011 Jun 10.
7
The role of exopolysaccharides Psl and Pel in resistance of to the oxidative stressors sodium hypochlorite and hydrogen peroxide.
Microbiol Spectr. 2024 Oct 3;12(10):e0092224. doi: 10.1128/spectrum.00922-24. Epub 2024 Aug 28.
10
Polysorbate 80 inhibition of Pseudomonas aeruginosa biofilm formation and its cleavage by the secreted lipase LipA.
Antimicrob Agents Chemother. 2009 Jan;53(1):136-45. doi: 10.1128/AAC.00500-08. Epub 2008 Oct 27.

引用本文的文献

1
Hostile Environments: Modifying Surfaces to Block Microbial Adhesion and Biofilm Formation.
Biomolecules. 2025 May 23;15(6):754. doi: 10.3390/biom15060754.
2
Multiple biological characteristics and functions of intestinal biofilm extracellular polymers: friend or foe?
Front Microbiol. 2024 Aug 19;15:1445630. doi: 10.3389/fmicb.2024.1445630. eCollection 2024.
3
The role of exopolysaccharides Psl and Pel in resistance of to the oxidative stressors sodium hypochlorite and hydrogen peroxide.
Microbiol Spectr. 2024 Oct 3;12(10):e0092224. doi: 10.1128/spectrum.00922-24. Epub 2024 Aug 28.
4
Tetramerization is essential for the enzymatic function of the virulence factor UDP-glucose pyrophosphorylase.
mBio. 2024 Apr 10;15(4):e0211423. doi: 10.1128/mbio.02114-23. Epub 2024 Mar 12.
5
Membrane fluidity homeostasis is required for tobramycin-enhanced biofilm in .
Microbiol Spectr. 2024 Apr 2;12(4):e0230323. doi: 10.1128/spectrum.02303-23. Epub 2024 Feb 27.
6
Biofilm formation: mechanistic insights and therapeutic targets.
Mol Biomed. 2023 Dec 15;4(1):49. doi: 10.1186/s43556-023-00164-w.
7
Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation.
FEMS Microbiol Rev. 2023 Nov 1;47(6). doi: 10.1093/femsre/fuad060.
8
Biosynthesis and Gene Regulation of Rhamnolipid Congeners.
Curr Microbiol. 2023 Jul 26;80(9):302. doi: 10.1007/s00284-023-03405-x.

本文引用的文献

1
The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix.
Environ Microbiol. 2012 Aug;14(8):1913-28. doi: 10.1111/j.1462-2920.2011.02657.x. Epub 2011 Dec 19.
2
Are we any closer to beating the biofilm: novel methods of biofilm control.
Curr Opin Infect Dis. 2010 Dec;23(6):560-6. doi: 10.1097/QCO.0b013e32833e5850.
3
The biofilm matrix.
Nat Rev Microbiol. 2010 Sep;8(9):623-33. doi: 10.1038/nrmicro2415. Epub 2010 Aug 2.
4
New antibiotic agents and approaches to treat biofilm-associated infections.
Expert Opin Ther Pat. 2010 Oct;20(10):1373-87. doi: 10.1517/13543776.2010.505923.
6
Synthesis of biosurfactants and their advantages to microorganisms and mankind.
Adv Exp Med Biol. 2010;672:261-80. doi: 10.1007/978-1-4419-5979-9_20.
7
Microbial biosurfactants and biodegradation.
Adv Exp Med Biol. 2010;672:65-74. doi: 10.1007/978-1-4419-5979-9_5.
8
An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal.
FEMS Immunol Med Microbiol. 2010 Aug;59(3):253-68. doi: 10.1111/j.1574-695X.2010.00690.x. Epub 2010 Apr 23.
9
Prevention and control of biofilm-based medical-device-related infections.
FEMS Immunol Med Microbiol. 2010 Aug;59(3):227-38. doi: 10.1111/j.1574-695X.2010.00665.x. Epub 2010 Mar 3.
10
Review: Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa.
Innate Immun. 2009 Oct;15(5):261-312. doi: 10.1177/1753425909106436. Epub 2009 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验