Traeger John C, Morton Thomas Hellman
Department of Chemistry, La Trobe University, Bundoora, Victoria, Australia.
J Am Soc Mass Spectrom. 2004 Jul;15(7):989-97. doi: 10.1016/j.jasms.2004.03.016.
Photoionization studies of (CH(3))(2)CHC(CH(3))(2)OH (tert-hexyl alcohol, also called thexyl alcohol) exhibit four fragmentations below 10 eV. As with other tertiary alcohols, no molecular ion is detected. The only ion observed at threshold corresponds to propane loss. Examination of a deuterated analogue, (CH(3))(2)CHC(CD(3))(2)OH, shows only loss of C(3)H(7)D, implying that the fragment ion has the structure of ionized acetone enol. There is no evidence for reversible deuterium transposition, as has been reported for isotopomers of the homologous secondary alcohol (CH(3))(2)CHCH(CH(3))OH. Propane loss from thexyl alcohol is attributed to intermediacy of ion-neutral complexes containing isopropyl radical and O-protonated acetone. Simple cleavage to give O-protonated acetone has an appearance energy 18 kJ mol(-1) higher than that of propane loss. Thermochemical estimates and ab initio calculations both predict that methyl loss should have a lower threshold than the fragmentation leading to isopropyl loss, but experiments show the appearance energy to be 6 kJ mol(-1) higher. This is consistent with previous reports of reverse activation barriers for methyl cleavages. Finally, formation of tert-hexyl cation, (CH(3))(2)CHC(CH(3))(2)(+), is observed with an appearance energy comparable to that of methyl loss, substantially below that predicted for OH radical expulsion from the molecular ion. The comparatively low threshold of this fragmentation is ascribed to ion-pair formation (concomitant with hydroxide ion) directly from an electronically excited neutral. Interactions between charged and neutral fragments (including energetics, bond orders <1, and electrical charges on molecular fragments) are explored using a combination of DFT and ab initio methods, along with topological analysis using the Atoms in Molecules approach.
对(CH(3))(2)CHC(CH(3))(2)OH(叔己醇,也称为特己醇)的光电离研究表明,在10 eV以下有四种碎片化过程。与其他叔醇一样,未检测到分子离子。在阈值处观察到的唯一离子对应于丙烷损失。对氘代类似物(CH(3))(2)CHC(CD(3))(2)OH的研究表明,仅损失C(3)H(7)D,这意味着碎片离子具有离子化丙酮烯醇的结构。没有证据表明存在如报道的同源仲醇(CH(3))(2)CHCH(CH(3))OH的同位素异构体那样的可逆氘迁移。叔己醇中丙烷的损失归因于含有异丙基自由基和O-质子化丙酮的离子-中性络合物的中间体。简单裂解生成O-质子化丙酮的出现能比丙烷损失的出现能高18 kJ mol(-1)。热化学估计和从头算计算均预测甲基损失的阈值应低于导致异丙基损失的碎片化阈值,但实验表明出现能高6 kJ mol(-1)。这与先前关于甲基裂解的反向活化能垒的报道一致。最后,观察到叔己基阳离子(CH(3))(2)CHC(CH(3))(2)(+)的形成,其出现能与甲基损失的出现能相当,大大低于从分子离子中排出OH自由基所预测的出现能。这种碎片化的相对低阈值归因于直接从电子激发中性体形成离子对(与氢氧根离子同时形成)。使用DFT和从头算方法相结合,以及使用分子中的原子方法进行拓扑分析,探索了带电和中性碎片之间的相互作用(包括能量学、键级<1以及分子碎片上的电荷)。