Combes D, Merrywest S D, Simmers J, Sillar K T
Laboratoire de Physiologie et Physiopathologie de la Signalization Cellulaire, UMR CNRS 5543, Universités Bordeaux 1 and Victor Segalen Bordeaux 2, 33076 Bordeaux, France.
J Physiol. 2004 Aug 15;559(Pt 1):17-24. doi: 10.1113/jphysiol.2004.069542. Epub 2004 Jul 2.
Amphibian metamorphosis includes a complete reorganization of an organism's locomotory system from axial-based swimming in larvae to limbed propulsion in the young adult. At critical stages during this behavioural switch, larval and adult motor systems operate in the same animal, commensurate with a gradual and dynamic reconfiguration of spinal locomotor circuitry. To study this plasticity, we have developed isolated preparations of the spinal cord and brainstem from pre- to post-metamorphic stages of the amphibian Xenopus laevis, in which spinal motor output patterns expressed spontaneously or in the presence of NMDA correlate with locomotor behaviour in the freely swimming animal. Extracellular ventral root recordings along the spinal cord of pre-metamorphic tadpoles revealed motor output corresponding to larval axial swimming, whereas postmetamorphic animals expressed motor patterns appropriate for bilaterally synchronous hindlimb flexion-extension kicks. However, in vitro recordings from metamorphic climax stages, with the tail and the limbs both functional, revealed two distinct motor patterns that could occur either independently or simultaneously, albeit at very different frequencies. Activity at 0.5-1 Hz in lumbar ventral roots corresponded to bipedal extension-flexion cycles, while the second, faster pattern (2-5 Hz) recorded from tail ventral roots corresponded to larval-like swimming. These data indicate that at intermediate stages during metamorphosis separate networks, one responsible for segmentally organized axial locomotion and another for more localized appendicular rhythm generation, coexist in the spinal cord and remain functional after isolation in vitro. These preparations now afford the opportunity to explore the cellular basis of locomotor network plasticity and reconfiguration necessary for behavioural changes during development.
两栖动物变态发育包括生物体运动系统的完全重组,从幼体基于轴向的游泳转变为成年幼体的肢体推进。在这种行为转变的关键阶段,幼体和成年运动系统在同一动物体内运行,这与脊髓运动回路的逐渐动态重构相一致。为了研究这种可塑性,我们从非洲爪蟾变态发育前到变态发育后的阶段开发了脊髓和脑干的离体标本,其中脊髓运动输出模式在自发或存在NMDA的情况下表达,与自由游泳动物的运动行为相关。对变态发育前蝌蚪脊髓进行的细胞外腹根记录显示,运动输出与幼体轴向游泳相对应,而变态发育后的动物则表现出适合双侧同步后肢屈伸踢动的运动模式。然而,在变态发育高潮阶段进行的体外记录中,尾巴和四肢都有功能,结果显示出两种不同的运动模式,它们可以独立或同时出现,尽管频率差异很大。腰段腹根0.5-1Hz的活动对应双足屈伸周期,而从尾段腹根记录到的第二种更快的模式(2-5Hz)对应幼体样游泳。这些数据表明,在变态发育的中间阶段,脊髓中存在两个独立的网络,一个负责节段性组织的轴向运动,另一个负责更局部的附肢节律产生,并且在体外分离后仍保持功能。这些标本现在为探索发育过程中行为变化所需的运动网络可塑性和重构的细胞基础提供了机会。