Vijatovic David, Toma Florina Alexandra, Harrington Zoe P M, Sommer Christopher, Hauschild Robert, Trevisan Alexandra J, Chapman Phillip, Julseth Mara J, Brenner-Morton Susan, Gabitto Mariano I, Dasen Jeremy S, Bikoff Jay B, Sweeney Lora B
Institute of Science and Technology Austria, Klosterneuburg, Austria.
Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
bioRxiv. 2024 Sep 27:2024.09.20.614050. doi: 10.1101/2024.09.20.614050.
Vertebrates exhibit a wide range of motor behaviors, ranging from swimming to complex limb-based movements. Here we take advantage of frog metamorphosis, which captures a swim-to-limb-based movement transformation during the development of a single organism, to explore changes in the underlying spinal circuits. We find that the tadpole spinal cord contains small and largely homogeneous populations of motor neurons (MNs) and V1 interneurons (V1s) at early escape swimming stages. These neuronal populations only modestly increase in number and subtype heterogeneity with the emergence of free swimming. In contrast, during frog metamorphosis and the emergence of limb movement, there is a dramatic expansion of MN and V1 interneuron number and transcriptional heterogeneity, culminating in cohorts of neurons that exhibit striking molecular similarity to mammalian motor circuits. CRISPR/Cas9-mediated gene disruption of the limb MN and V1 determinants FoxP1 and Engrailed-1, respectively, results in severe but selective deficits in tail and limb function. Our work thus demonstrates that neural diversity scales exponentially with increasing behavioral complexity and illustrates striking evolutionary conservation in the molecular organization and function of motor circuits across species.
脊椎动物表现出广泛的运动行为,从游泳到基于肢体的复杂运动。在这里,我们利用青蛙变态这一过程,它捕捉了单个生物体发育过程中从游泳到基于肢体运动的转变,来探索潜在脊髓回路的变化。我们发现,在早期逃避游泳阶段,蝌蚪脊髓包含数量少且基本同质的运动神经元(MNs)和V1中间神经元(V1s)。随着自由游泳的出现,这些神经元群体的数量和亚型异质性仅适度增加。相比之下,在青蛙变态和肢体运动出现期间,MN和V1中间神经元的数量以及转录异质性急剧增加,最终形成与哺乳动物运动回路表现出惊人分子相似性的神经元群体。分别通过CRISPR/Cas9介导的基因破坏肢体MN和V1决定因子FoxP1和Engrailed-1,会导致尾巴和肢体功能出现严重但选择性的缺陷。因此,我们的工作表明,神经多样性随着行为复杂性的增加呈指数级增长,并说明了跨物种运动回路在分子组织和功能方面惊人的进化保守性。