Beyeler Anna, Métais Charles, Combes Denis, Simmers John, Le Ray Didier
Université de Bordeaux, Centre National de la Recherche Scientifique, Laboratoire Mouvement Adaptation Cognition (UMR 5227) Bordeaux, France.
J Neurophysiol. 2008 Sep;100(3):1372-83. doi: 10.1152/jn.00023.2008. Epub 2008 Jul 2.
Anuran metamorphosis includes a complete remodeling of the animal's biomechanical apparatus, requiring a corresponding functional reorganization of underlying central neural circuitry. This involves changes that must occur in the coordination between the motor outputs of different spinal segments to harmonize locomotor and postural functions as the limbs grow and the tail regresses. In premetamorphic Xenopus laevis tadpoles, axial motor output drives rostrocaudally propagating segmental myotomal contractions that generate propulsive body undulations. During metamorphosis, the anterior axial musculature of the tadpole progressively evolves into dorsal muscles in the postmetamorphic froglet in which some of these back muscles lose their implicit locomotor function to serve exclusively in postural control in the adult. To understand how locomotor and postural systems interact during locomotion in juvenile Xenopus, we have investigated the coordination between postural back and hindlimb muscle activity during free forward swimming. Axial/dorsal muscles, which contract in bilateral alternation during undulatory swimming in premetamorphic tadpoles, change their left-right coordination to become activated in phase with bilaterally synchronous hindlimb extensions in locomoting juveniles. Based on in vitro electrophysiological experiments as well as specific spinal lesions in vivo, a spinal cord region was delimited in which propriospinal interactions are directly responsible for the coordination between leg and back muscle contractions. Our findings therefore indicate that dynamic postural adjustments during adult Xenopus locomotion are mediated by local intraspinal pathways through which the lumbar generator for hindlimb propulsive kicking provides caudorostral commands to thoracic spinal circuitry controlling the dorsal trunk musculature.
无尾两栖类的变态发育包括动物生物力学装置的彻底重塑,这需要对潜在的中枢神经回路进行相应的功能重组。这涉及到不同脊髓节段运动输出之间协调的变化,以在四肢生长和尾巴退化时协调运动和姿势功能。在变态前的非洲爪蟾蝌蚪中,轴向运动输出驱动从前向后传播的节段性肌节收缩,产生推进性的身体波动。在变态过程中,蝌蚪的前部轴向肌肉组织逐渐演变成变态后幼蛙的背部肌肉,其中一些背部肌肉失去了其隐含的运动功能,仅在成体中用于姿势控制。为了了解幼年非洲爪蟾在运动过程中运动和姿势系统是如何相互作用的,我们研究了自由向前游泳时姿势性背部肌肉和后肢肌肉活动之间的协调性。在变态前的蝌蚪波动式游泳过程中以双侧交替方式收缩的轴向/背部肌肉,改变其左右协调性,在运动的幼体中与双侧同步的后肢伸展同步激活。基于体外电生理实验以及体内特定的脊髓损伤,确定了一个脊髓区域,在该区域中脊髓 propriospinal 相互作用直接负责腿部和背部肌肉收缩之间的协调。因此,我们的研究结果表明,成年非洲爪蟾运动过程中的动态姿势调整是由局部脊髓内通路介导的,通过该通路,后肢推进踢腿的腰节发生器向控制背侧躯干肌肉的胸段脊髓回路提供从尾到头的指令。