Suppr超能文献

钠氢交换体和牵张激活通道的激活是大鼠心脏肌细胞和肌肉对牵张产生缓慢变力反应的基础。

Activation of Na+-H+ exchange and stretch-activated channels underlies the slow inotropic response to stretch in myocytes and muscle from the rat heart.

作者信息

Calaghan Sarah, White Ed

机构信息

School of Biomedical Sciences, University of Leeds, Leeds LS2 9NQ, UK.

出版信息

J Physiol. 2004 Aug 15;559(Pt 1):205-14. doi: 10.1113/jphysiol.2004.069021. Epub 2004 Jul 2.

Abstract

We present the first direct comparison of the major candidates proposed to underlie the slow phase of the force increase seen following myocardial stretch: (i) the Na(+)-H(+) exchanger (NHE) (ii) nitric oxide (NO) and the ryanodine receptor (RyR) and (iii) the stretch-activated channel (SAC) in both single myocytes and multicellular muscle preparations from the rat heart. Ventricular myocytes were stretched by approximately 7% using carbon fibres. Papillary muscles were stretched from 88 to 98% of the length at which maximum tension is generated (L(max)). Inhibition of NHE with HOE 642 (5 microm) significantly reduced (P < 0.05) the magnitude of the slow force response in both muscle and myocytes. Neither inhibition of phosphatidylinositol-3-OH kinase (PtdIns-3-OH kinase) with LY294002 (10 microm) nor NO synthase with L-NAME (1 mm) reduced the slow force response in muscle or myocytes (P > 0.05), and the slow response was still present in the single myocyte when the sarcoplasmic reticulum was rigorously inhibited with 1 microm ryanodine and 1 microm thapsigargin. We saw a significant reduction (P < 0.05) in the slow force response in the presence of the SAC blocker streptomycin in both muscle (80 microm) and myocytes (40 microm). In fura 2-loaded myocytes, HOE 642 and streptomycin, but not L-NAME, ablated the stretch-induced increase in Ca(2+) transient amplitude. Our data suggest that in the rat, under our experimental conditions, there are two mechanisms that underlie the slow inotropic response to stretch: activation of NHE; and of activation of SACs. Both these mechanisms are intrinsic to the myocyte.

摘要

我们首次对心肌拉伸后所见的缓慢力量增加的主要潜在机制进行了直接比较

(i)钠氢交换体(NHE);(ii)一氧化氮(NO)和兰尼碱受体(RyR);(iii)大鼠心脏单个心肌细胞和多细胞肌肉标本中的牵张激活通道(SAC)。使用碳纤维将心室肌细胞拉伸约7%。乳头肌从产生最大张力的长度(Lmax)的88%拉伸至98%。用HOE 642(5 μmol)抑制NHE可显著降低(P < 0.05)肌肉和心肌细胞中缓慢力量反应的幅度。用LY294002(μmol)抑制磷脂酰肌醇-3-OH激酶(PtdIns-3-OH激酶)或用L-NAME(1 mmol)抑制NO合酶均未降低肌肉或心肌细胞中的缓慢力量反应(P > 0.05),并且当用1 μmol兰尼碱和1 μmol毒胡萝卜素严格抑制肌浆网时,单个心肌细胞中仍存在缓慢反应。我们发现,在肌肉(80 μmol)和心肌细胞(40 μmol)中存在SAC阻滞剂链霉素的情况下,缓慢力量反应显著降低(P < 0.05)。在装载fura 2的心肌细胞中,HOE 642和链霉素而非L-NAME消除了牵张诱导的[Ca2+]i瞬变幅度增加。我们的数据表明,在大鼠中,在我们的实验条件下,有两种机制构成了对牵张的缓慢变力反应的基础:NHE的激活;以及SACs的激活。这两种机制均为心肌细胞所固有。

相似文献

2
Stretch-dependent modulation of [Na+]i, [Ca2+]i, and pHi in rabbit myocardium--a mechanism for the slow force response.
Cardiovasc Res. 2005 Dec 1;68(3):454-63. doi: 10.1016/j.cardiores.2005.07.001. Epub 2005 Aug 15.
5
Effect of SR load and pH regulatory mechanisms on stretch-dependent Ca(2+) entry during the slow force response.
J Mol Cell Cardiol. 2013 Oct;63:37-46. doi: 10.1016/j.yjmcc.2013.07.008. Epub 2013 Jul 21.
6
A mathematical model of the slow force response to stretch in rat ventricular myocytes.
Biophys J. 2007 Jun 1;92(11):4030-44. doi: 10.1529/biophysj.106.095463. Epub 2007 Mar 16.
7
Functional relevance of the stretch-dependent slow force response in failing human myocardium.
Circ Res. 2004 May 28;94(10):1392-8. doi: 10.1161/01.RES.0000129181.48395.ff. Epub 2004 Apr 22.
8
Stretch-activated channels in the heart: contributions to length-dependence and to cardiomyopathy.
Prog Biophys Mol Biol. 2008 Jun-Jul;97(2-3):232-49. doi: 10.1016/j.pbiomolbio.2008.02.009. Epub 2008 Feb 13.
9
Silencing of NHE-1 blunts the slow force response to myocardial stretch.
J Appl Physiol (1985). 2011 Sep;111(3):874-80. doi: 10.1152/japplphysiol.01344.2010. Epub 2011 Jun 9.
10
Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure.
Circ Res. 2008 Oct 10;103(8):891-9. doi: 10.1161/CIRCRESAHA.108.175141. Epub 2008 Sep 5.

引用本文的文献

1
2
The Anrep effect in septic shock: a mechanism of cardiac adaptation.
Br J Anaesth. 2025 Apr;134(4):1204-1207. doi: 10.1016/j.bja.2025.01.023. Epub 2025 Feb 17.
3
Stretch regulation of β2-Adrenoceptor signalling in cardiomyocytes requires caveolae.
Cardiovasc Res. 2025 Apr 29;121(3):440-453. doi: 10.1093/cvr/cvae265.
4
Piezo buffers mechanical stress via modulation of intracellular Ca handling in the heart.
Front Physiol. 2022 Sep 14;13:1003999. doi: 10.3389/fphys.2022.1003999. eCollection 2022.
5
Modeling cardiomyocyte mechanics and autoregulation of contractility by mechano-chemo-transduction feedback.
iScience. 2022 Jun 26;25(7):104667. doi: 10.1016/j.isci.2022.104667. eCollection 2022 Jul 15.
7
Electrophysiological Remodeling: Cardiac T-Tubules and ß-Adrenoceptors.
Cells. 2021 Sep 17;10(9):2456. doi: 10.3390/cells10092456.
9
CaMKII activity contributes to homeometric autoregulation of the heart: A novel mechanism for the Anrep effect.
J Physiol. 2020 Aug;598(15):3129-3153. doi: 10.1113/JP279607. Epub 2020 Jun 14.
10
Disruption of Transverse-Tubules Eliminates the Slow Force Response to Stretch in Isolated Rat Trabeculae.
Front Physiol. 2020 Mar 6;11:193. doi: 10.3389/fphys.2020.00193. eCollection 2020.

本文引用的文献

1
Functional relevance of the stretch-dependent slow force response in failing human myocardium.
Circ Res. 2004 May 28;94(10):1392-8. doi: 10.1161/01.RES.0000129181.48395.ff. Epub 2004 Apr 22.
2
Influence of Na+-independent Cl--HCO3- exchange on the slow force response to myocardial stretch.
Circ Res. 2003 Nov 28;93(11):1082-8. doi: 10.1161/01.RES.0000102408.25664.01. Epub 2003 Oct 23.
3
Do stretch-induced changes in intracellular calcium modify the electrical activity of cardiac muscle?
Prog Biophys Mol Biol. 2003 May-Jul;82(1-3):81-95. doi: 10.1016/s0079-6107(03)00007-5.
4
Differential effects of stretch and compression on membrane currents and [Na+]c in ventricular myocytes.
Prog Biophys Mol Biol. 2003 May-Jul;82(1-3):43-56. doi: 10.1016/s0079-6107(03)00004-x.
5
Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent.
Cardiovasc Res. 2003 Mar 15;57(4):1052-61. doi: 10.1016/s0008-6363(02)00830-1.
6
Stretch-elicited Na+/H+ exchanger activation: the autocrine/paracrine loop and its mechanical counterpart.
Cardiovasc Res. 2003 Mar 15;57(4):953-60. doi: 10.1016/s0008-6363(02)00768-x.
7
Intracellular Na+ regulation in cardiac myocytes.
Cardiovasc Res. 2003 Mar 15;57(4):897-912. doi: 10.1016/s0008-6363(02)00656-9.
9
Coronary perfusion and muscle lengthening increase cardiac contraction: different stretch-triggered mechanisms.
Am J Physiol Heart Circ Physiol. 2002 Oct;283(4):H1515-22. doi: 10.1152/ajpheart.00113.2002.
10
Na+-Ca2+ exchange activity is localized in the T-tubules of rat ventricular myocytes.
Circ Res. 2002 Aug 23;91(4):315-22. doi: 10.1161/01.res.0000030180.06028.23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验