Suppr超能文献

大鼠脑片纹状体γ-氨基丁酸能输出神经元之间的电传递和化学传递

Electrical and chemical transmission between striatal GABAergic output neurones in rat brain slices.

作者信息

Venance Laurent, Glowinski Jacques, Giaume Christian

机构信息

Neurobiologie Pharmacologique, INSERM U-114, Collège de France, Paris, France.

出版信息

J Physiol. 2004 Aug 15;559(Pt 1):215-30. doi: 10.1113/jphysiol.2004.065672. Epub 2004 Jul 2.

Abstract

Basal ganglia are interconnected subcortical nuclei, connected to the thalamus and all cortical areas involved in sensory motor control, limbic functions and cognition. The striatal output neurones (SONs), the major striatal population, are believed to act as detectors and integrators of distributed patterns of cerebral cortex inputs. Despite the key role of SONs in cortico-striatal information processing, little is known about their local interactions. Here, we report the existence and characterization of electrical and GABAergic transmission between SONs in rat brain slices. Tracer coupling (biocytin) incidence was high during the first two postnatal weeks and then decreased (postnatal days (P) 5-25, 60%; P25-30, 29%; n= 61). Electrical coupling was observed between 27% of SON pairs (coupling coefficient: 3.1 +/- 0.3%, n= 89 at P15) and as shown by single-cell RT-PCR, several connexin (Cx) mRNAs were found to be expressed (Cx31.1, Cx32, Cx36 and Cx47). GABAergic synaptic transmission (abolished by bicuculline, a GABA(A) receptor antagonist) observed in 19% of SON pairs (n= 62) was reliable (mean failure rate of 6 +/- 3%), precise (variation coefficient of latency, 0.06), strong (IPSC amplitudes of 38 +/- 12 pA) and unidirectional. Interestingly, electrical and chemical transmission were mutually exclusive. These results suggest that preferential networks of electrically and chemically connected SONs, might be involved in the channelling of cortico-basal ganglia information processing.

摘要

基底神经节是相互连接的皮质下核团,与丘脑以及参与感觉运动控制、边缘系统功能和认知的所有皮质区域相连。纹状体输出神经元(SONs)是纹状体的主要细胞群,被认为是大脑皮质输入分布式模式的探测器和整合器。尽管SONs在皮质-纹状体信息处理中起关键作用,但其局部相互作用却鲜为人知。在此,我们报告了大鼠脑片中SONs之间电传递和GABA能传递的存在及其特征。示踪剂偶联(生物素)发生率在出生后的前两周较高,然后下降(出生后天数(P)为5 - 25天,60%;P25 - 30天,29%;n = 61)。在27%的SON对之间观察到电偶联(偶联系数:3.1±0.3%,P15时n = 89),并且通过单细胞逆转录聚合酶链反应显示,发现有几种连接蛋白(Cx)mRNA表达(Cx31.1、Cx32、Cx36和Cx47)。在19%的SON对(n = 62)中观察到GABA能突触传递(被GABA(A)受体拮抗剂荷包牡丹碱消除),这种传递是可靠的(平均失败率为6±3%)、精确的(潜伏期变异系数为0.06)、强大的(抑制性突触后电流幅度为38±12 pA)且单向的。有趣的是,电传递和化学传递是相互排斥的。这些结果表明,电连接和化学连接的SONs的优先网络可能参与皮质-基底神经节信息处理的通道形成。

相似文献

1
Electrical and chemical transmission between striatal GABAergic output neurones in rat brain slices.
J Physiol. 2004 Aug 15;559(Pt 1):215-30. doi: 10.1113/jphysiol.2004.065672. Epub 2004 Jul 2.
2
Spike-timing dependent plasticity in striatal interneurons.
Neuropharmacology. 2011 Apr;60(5):780-8. doi: 10.1016/j.neuropharm.2011.01.023. Epub 2011 Jan 22.
3
Inhibitory interactions between spiny projection neurons in the rat striatum.
J Neurophysiol. 2002 Sep;88(3):1263-9. doi: 10.1152/jn.2002.88.3.1263.
6
When inhibition goes incognito: feedback interaction between spiny projection neurons in striatal function.
Trends Neurosci. 2003 Aug;26(8):436-43. doi: 10.1016/S0166-2236(03)00196-6.

引用本文的文献

1
Cholecystokinin Modulates Corticostriatal Transmission and Plasticity in Rodents.
eNeuro. 2025 Mar 12;12(3). doi: 10.1523/ENEURO.0251-24.2025. Print 2025 Mar.
2
Globus pallidus is not independent from striatal direct pathway neurons: an up-to-date review.
Mol Brain. 2024 Jun 7;17(1):34. doi: 10.1186/s13041-024-01107-4.
3
Anti-Hebbian plasticity drives sequence learning in striatum.
Commun Biol. 2024 May 9;7(1):555. doi: 10.1038/s42003-024-06203-8.
4
The Effect of Serotonin Receptor 5-HT1B on Lateral Inhibition between Spiny Projection Neurons in the Mouse Striatum.
J Neurosci. 2021 Sep 15;41(37):7831-7847. doi: 10.1523/JNEUROSCI.1037-20.2021. Epub 2021 Aug 4.
5
Gap Junctions Between Striatal D1 Neurons and Cholinergic Interneurons.
Front Cell Neurosci. 2021 Jun 8;15:674399. doi: 10.3389/fncel.2021.674399. eCollection 2021.
6
Brain Disorders and Chemical Pollutants: A Gap Junction Link?
Biomolecules. 2020 Dec 31;11(1):51. doi: 10.3390/biom11010051.
7
Dynamic postnatal development of the cellular and circuit properties of striatal D1 and D2 spiny projection neurons.
J Physiol. 2019 Nov;597(21):5265-5293. doi: 10.1113/JP278416. Epub 2019 Oct 10.
8
Region-specific and state-dependent action of striatal GABAergic interneurons.
Nat Commun. 2018 Aug 21;9(1):3339. doi: 10.1038/s41467-018-05847-5.
10
Connexins and pannexins: At the junction of neuro-glial homeostasis & disease.
J Neurosci Res. 2018 Jan;96(1):31-44. doi: 10.1002/jnr.24088. Epub 2017 Jun 5.

本文引用的文献

1
Electrical coupling and neuronal synchronization in the Mammalian brain.
Neuron. 2004 Feb 19;41(4):495-511. doi: 10.1016/s0896-6273(04)00043-1.
2
Heterogeneity of spike frequency adaptation among medium spiny neurones from the rat striatum.
Neuroscience. 2003;122(1):77-92. doi: 10.1016/s0306-4522(03)00553-0.
4
Fast synaptic transmission between striatal spiny projection neurons.
Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15764-9. doi: 10.1073/pnas.242428599. Epub 2002 Nov 18.
5
Olfactory network dynamics and the coding of multidimensional signals.
Nat Rev Neurosci. 2002 Nov;3(11):884-95. doi: 10.1038/nrn964.
6
Inhibitory interactions between spiny projection neurons in the rat striatum.
J Neurophysiol. 2002 Sep;88(3):1263-9. doi: 10.1152/jn.2002.88.3.1263.
7
Emerging issues of connexin channels: biophysics fills the gap.
Q Rev Biophys. 2001 Aug;34(3):325-472. doi: 10.1017/s0033583501003705.
8
Interneurons, spike timing, and perception.
Neuron. 2001 Dec 6;32(5):771-4. doi: 10.1016/s0896-6273(01)00528-1.
9
Electrical synapses between GABA-releasing interneurons.
Nat Rev Neurosci. 2001 Jun;2(6):425-33. doi: 10.1038/35077566.
10
Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network.
J Neurosci. 2001 Apr 15;21(8):2687-98. doi: 10.1523/JNEUROSCI.21-08-02687.2001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验