Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, 92521.
Center for Glial-Neuronal Interactions, University of California Riverside, Riverside, CA, 92521.
J Neurosci Res. 2018 Jan;96(1):31-44. doi: 10.1002/jnr.24088. Epub 2017 Jun 5.
In the central nervous system (CNS), connexin (Cx)s and pannexin (Panx)s are an integral component of homeostatic neuronal excitability and synaptic plasticity. Neuronal Cx gap junctions form electrical synapses across biochemically similar GABAergic networks, allowing rapid and extensive inhibition in response to principle neuron excitation. Glial Cx gap junctions link astrocytes and oligodendrocytes in the pan-glial network that is responsible for removing excitotoxic ions and metabolites. In addition, glial gap junctions help constrain excessive excitatory activity in neurons and facilitate astrocyte Ca slow wave propagation. Panxs do not form gap junctions in vivo, but Panx hemichannels participate in autocrine and paracrine gliotransmission, alongside Cx hemichannels. ATP and other gliotransmitters released by Cx and Panx hemichannels maintain physiologic glutamatergic tone by strengthening synapses and mitigating aberrant high frequency bursting. Under pathological depolarizing and inflammatory conditions, gap junctions and hemichannels become dysregulated, resulting in excessive neuronal firing and seizure. In this review, we present known contributions of Cxs and Panxs to physiologic neuronal excitation and explore how the disruption of gap junctions and hemichannels lead to abnormal glutamatergic transmission, purinergic signaling, and seizures.
在中枢神经系统 (CNS) 中,连接蛋白 (Cx) 和连接蛋白 (Panx) 是维持神经元兴奋性和突触可塑性的重要组成部分。神经元 Cx 缝隙连接形成横跨生化相似 GABA 能网络的电突触,使神经元兴奋时能够快速而广泛地抑制。神经胶质 Cx 缝隙连接将星形胶质细胞和少突胶质细胞连接在全神经胶质网络中,该网络负责清除兴奋性离子和代谢物。此外,神经胶质缝隙连接有助于限制神经元中过度的兴奋性活动,并促进星形胶质细胞 Ca2+慢波传播。Panx 体内不形成缝隙连接,但 Panx 半通道与 Cx 半通道一起参与自分泌和旁分泌神经胶质传递。Cx 和 Panx 半通道释放的 ATP 和其他神经递质通过增强突触和减轻异常高频爆发来维持生理谷氨酸能张力。在病理去极化和炎症条件下,缝隙连接和半通道变得失调,导致神经元过度放电和癫痫发作。在这篇综述中,我们介绍了 Cx 和 Panx 对生理神经元兴奋的已知贡献,并探讨了缝隙连接和半通道的破坏如何导致异常的谷氨酸能传递、嘌呤能信号传递和癫痫发作。