Suppr超能文献

用于高通量生物处理的膜曝气微生物反应器。

Membrane-aerated microbioreactor for high-throughput bioprocessing.

作者信息

Zanzotto Andrea, Szita Nicolas, Boccazzi Paolo, Lessard Philip, Sinskey Anthony J, Jensen Klavs F

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Biotechnol Bioeng. 2004 Jul 20;87(2):243-54. doi: 10.1002/bit.20140.

Abstract

A microbioreactor with a volume of microliters is fabricated out of poly(dimethylsiloxane) (PDMS) and glass. Aeration of microbial cultures is through a gas-permeable PDMS membrane. Sensors are integrated for on-line measurement of optical density (OD), dissolved oxygen (DO), and pH. All three parameter measurements are based on optical methods. Optical density is monitored via transmittance measurements through the well of the microbioreactor while dissolved oxygen and pH are measured using fluorescence lifetime-based sensors incorporated into the body of the microbioreactor. Bacterial fermentations carried out in the microbioreactor under well-defined conditions are compared to results obtained in a 500-mL bench-scale bioreactor. It is shown that the behavior of the bacteria in the microbioreactor is similar to that in the larger bioreactor. This similarity includes growth kinetics, dissolved oxygen profile within the vessel over time, pH profile over time, final number of cells, and cell morphology. Results from off-line analysis of the medium to examine organic acid production and substrate utilization are presented. By changing the gaseous environmental conditions, it is demonstrated that oxygen levels within the microbioreactor can be manipulated. Furthermore, it is demonstrated that the sensitivity and reproducibility of the microbioreactor system are such that statistically significant differences in the time evolution of the OD, DO, and pH can be used to distinguish between different physiological states. Finally, modeling of the transient oxygen transfer within the microbioreactor based on observed and predicted growth kinetics is used to quantitatively characterize oxygen depletion in the system.

摘要

一个体积为微升的微生物反应器由聚二甲基硅氧烷(PDMS)和玻璃制成。微生物培养物的通气通过透气的PDMS膜进行。集成了传感器,用于在线测量光密度(OD)、溶解氧(DO)和pH值。所有这三个参数的测量均基于光学方法。通过微生物反应器孔的透光率测量来监测光密度,而使用集成在微生物反应器主体中的基于荧光寿命的传感器来测量溶解氧和pH值。将在明确条件下于微生物反应器中进行的细菌发酵与在500毫升实验室规模生物反应器中获得的结果进行比较。结果表明,微生物反应器中细菌的行为与较大生物反应器中的相似。这种相似性包括生长动力学、容器内溶解氧随时间的变化曲线、pH随时间的变化曲线、最终细胞数量和细胞形态。展示了对培养基进行离线分析以检测有机酸产生和底物利用的结果。通过改变气体环境条件,证明了可以控制微生物反应器内的氧气水平。此外,证明了微生物反应器系统的灵敏度和重现性使得OD、DO和pH随时间演变的统计学显著差异可用于区分不同的生理状态。最后,基于观察到的和预测的生长动力学对微生物反应器内的瞬态氧气转移进行建模,以定量表征系统中的氧气消耗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验