Suppr超能文献

在多功能生物反应器芯片阵列中进行筛选培养的降尺度化,以加快基于酵母的乳酸生物生产的优化。

Downscaling screening cultures in a multifunctional bioreactor array-on-a-chip for speeding up optimization of yeast-based lactic acid bioproduction.

机构信息

ACIB GmbH, Austrian Centre of Industrial Biotechnology, Vienna, Austria.

Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.

出版信息

Biotechnol Bioeng. 2020 Jul;117(7):2046-2057. doi: 10.1002/bit.27338. Epub 2020 Apr 6.

Abstract

A key challenge for bioprocess engineering is the identification of the optimum process conditions for the production of biochemical and biopharmaceutical compounds using prokaryotic as well as eukaryotic cell factories. Shake flasks and bench-scale bioreactor systems are still the golden standard in the early stage of bioprocess development, though they are known to be expensive, time-consuming, and labor-intensive as well as lacking the throughput for efficient production optimizations. To bridge the technological gap between bioprocess optimization and upscaling, we have developed a microfluidic bioreactor array to reduce time and costs, and to increase throughput compared with traditional lab-scale culture strategies. We present a multifunctional microfluidic device containing 12 individual bioreactors (V  = 15 µl) in a 26 mm × 76 mm area with in-line biosensing of dissolved oxygen and biomass concentration. Following initial device characterization, the bioreactor lab-on-a-chip was used in a proof-of-principle study to identify the most productive cell line for lactic acid production out of two engineered yeast strains, evaluating whether it could reduce the time needed for collecting meaningful data compared with shake flasks cultures. Results of the study showed significant difference in the strains' productivity within 3 hr of operation exhibiting a 4- to 6-fold higher lactic acid production, thus pointing at the potential of microfluidic technology as effective screening tool for fast and parallelizable industrial bioprocess development.

摘要

生物工艺工程的一个关键挑战是确定使用原核和真核细胞工厂生产生化和生物制药化合物的最佳工艺条件。摇瓶和台式生物反应器系统仍然是生物工艺开发早期的黄金标准,尽管它们众所周知昂贵、耗时、劳动密集,并且缺乏高效生产优化的通量。为了缩小生物工艺优化和放大之间的技术差距,我们开发了一种微流控生物反应器阵列,以减少时间和成本,并与传统的实验室规模培养策略相比提高通量。我们提出了一种多功能微流控设备,其中包含 12 个单独的生物反应器(V  = 15 μl),面积为 26 毫米×76 毫米,具有在线溶解氧和生物量浓度生物传感功能。在初始设备表征之后,该生物反应器片上实验室用于原理验证研究,以确定两种工程酵母菌株中生产乳酸的最具生产力的细胞系,评估与摇瓶培养相比,它是否可以减少收集有意义数据所需的时间。研究结果表明,在 3 小时的操作过程中,菌株的生产力存在显著差异,乳酸产量提高了 4 到 6 倍,从而指出微流控技术作为快速和可并行化的工业生物工艺开发有效筛选工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f225/7317386/4dac134b1e82/BIT-117-2046-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验