Suppr超能文献

体内基因电转导入骨骼肌:质粒DNA对肌肉损伤发生及程度的影响。

In vivo gene electrotransfer into skeletal muscle: effects of plasmid DNA on the occurrence and extent of muscle damage.

作者信息

Durieux Anne-Cécile, Bonnefoy Régis, Busso Thierry, Freyssenet Damien

机构信息

Laboratoire de Physiologie, Groupe Physiologie et Physiopathologie de l'Exercice et Handicap, Université Jean Monnet, Saint-Etienne, France.

出版信息

J Gene Med. 2004 Jul;6(7):809-16. doi: 10.1002/jgm.534.

Abstract

BACKGROUND

Understanding the mechanisms underlying gene electrotransfer muscle damage can help to design more effective gene electrotransfer strategies for physiological and therapeutical applications. The present study investigates the factors involved in gene electrotransfer associated muscle damage.

METHODS

Histochemical analyses were used to determine the extent of transfection efficiency and muscle damage in the Tibialis anterior muscles of Sprague-Dawley male rats after gene electrotransfer.

RESULTS

Five days after gene electrotransfer, features of muscle degeneration and regeneration were consistently observed, thus limiting the extent of transfection efficiency. Signs of muscle degeneration/regeneration were no longer evident 21 days after gene electrotransfer except for the presence of central myonuclei. Neither the application of electrical pulses per se nor the extracellular presence of plasmid DNA per se contributed significantly to muscle damage (2.9 +/- 1.0 and 2.1 +/- 0.7% of the whole muscle cross-sectional area, respectively). Gene electrotransfer of a plasmid DNA, which does not support gene expression, increased significantly muscle damage (8.7 +/- 1.2%). When plasmid DNA expression was permitted (gene electrotransfer of pCMV-beta-galactosidase), muscle damage was further increased to 19.7 +/- 4.5%. Optimization of cumulated pulse duration and current intensity dramatically reduced gene electrotransfer associated muscle damage. Finally, mathematical modeling of gene electrotransfer associated muscle damage as a function of the number of electrons delivered to the tissue indicated that pulse length critically determined the extent of muscle damage.

CONCLUSION

Our data suggest that neither the extracellular presence of plasmid DNA per se nor the application of electric pulses per se contributes significantly to muscle damage. Gene electrotransfer associated muscle damage mainly arises from the intracellular presence and expression of plasmid DNA.

摘要

背景

了解基因电穿孔致肌肉损伤的机制有助于设计出更有效的用于生理和治疗应用的基因电穿孔策略。本研究调查了与基因电穿孔相关的肌肉损伤所涉及的因素。

方法

采用组织化学分析来确定基因电穿孔后雄性Sprague-Dawley大鼠胫前肌的转染效率和肌肉损伤程度。

结果

基因电穿孔后5天,持续观察到肌肉变性和再生特征,从而限制了转染效率。基因电穿孔21天后,除了存在中央肌细胞核外,肌肉变性/再生迹象不再明显。电脉冲本身的施加或质粒DNA本身在细胞外的存在对肌肉损伤的贡献均不显著(分别占整个肌肉横截面积的2.9±1.0%和2.1±0.7%)。不支持基因表达的质粒DNA的基因电穿孔显著增加了肌肉损伤(8.7±1.2%)。当允许质粒DNA表达时(pCMV-β-半乳糖苷酶的基因电穿孔),肌肉损伤进一步增加至19.7±4.5%。累积脉冲持续时间和电流强度的优化显著降低了与基因电穿孔相关的肌肉损伤。最后,将与基因电穿孔相关的肌肉损伤作为输送到组织的电子数量的函数进行数学建模表明,脉冲长度关键地决定了肌肉损伤的程度。

结论

我们的数据表明,质粒DNA本身在细胞外的存在或电脉冲本身的施加对肌肉损伤的贡献均不显著。与基因电穿孔相关的肌肉损伤主要源于质粒DNA在细胞内的存在和表达。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验