Sultan Fahad, Heck Detlef
Department of Cognitive Neurology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany.
J Physiol Paris. 2003 Jul-Nov;97(4-6):591-600. doi: 10.1016/j.jphysparis.2004.01.016.
The two major cortices of the brain--the cerebral and cerebellar cortex--are massively connected through intercalated nuclei (pontine, cerebellar and thalamic nuclei). We suggest that the two cortices co-operate by generating precise temporal patterns in the cerebral cortex that are detected in the cerebellar cortex as temporal patterns assembled spatially in the mossy fibers. We will begin by showing that the tidal-wave mechanism works in the cerebellar cortex as a read-out mechanism for such spatio-temporal patterns due to the synchronous activity they generate in the parallel fiber system which drives the Purkinje cells--the output neurons of the cerebellar cortex--to fire action potentials. We will review the anatomy of the mossy fibers and show that within a "beam", or "row" of cerebellar cortex the mossy fibers in principle could embed a vast number of tidal-wave generating sequences. Based on anatomical data we will argue that the cerebellar mossy fiber-granule cell-Purkinje cell system can potentially detect and--through learning--select from an enormous number of spatio-temporal patterns.
大脑的两个主要皮质——大脑皮质和小脑皮质——通过中间核(脑桥核、小脑核和丘脑核)大量连接。我们认为,这两个皮质通过在大脑皮质中产生精确的时间模式来合作,这些模式在小脑皮质中被检测为在苔藓纤维中空间组装的时间模式。我们将首先表明,由于它们在驱动浦肯野细胞(小脑皮质的输出神经元)产生动作电位的平行纤维系统中产生的同步活动,潮汐波机制在小脑皮质中作为这种时空模式的读出机制起作用。我们将回顾苔藓纤维的解剖结构,并表明在小脑皮质的一个“束”或“排”内,苔藓纤维原则上可以嵌入大量产生潮汐波的序列。基于解剖学数据,我们认为小脑苔藓纤维 - 颗粒细胞 - 浦肯野细胞系统有可能检测并通过学习从大量时空模式中进行选择。