Suppr超能文献

美国股票交易间隔时间的常见缩放模式。

Common scaling patterns in intertrade times of U. S. stocks.

作者信息

Ivanov Plamen Ch, Yuen Ainslie, Podobnik Boris, Lee Youngki

机构信息

Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 2):056107. doi: 10.1103/PhysRevE.69.056107. Epub 2004 May 17.

Abstract

We analyze the sequence of time intervals between consecutive stock trades of thirty companies representing eight sectors of the U.S. economy over a period of 4 yrs. For all companies we find that: (i) the probability density function of intertrade times may be fit by a Weibull distribution, (ii) when appropriately rescaled the probability densities of all companies collapse onto a single curve implying a universal functional form, (iii) the intertrade times exhibit power-law correlated behavior within a trading day and a consistently greater degree of correlation over larger time scales, in agreement with the correlation behavior of the absolute price returns for the corresponding company, and (iv) the magnitude series of intertrade time increments is characterized by long-range power-law correlations suggesting the presence of nonlinear features in the trading dynamics, while the sign series is anticorrelated at small scales. Our results suggest that independent of industry sector, market capitalization and average level of trading activity, the series of intertrade times exhibit possibly universal scaling patterns, which may relate to a common mechanism underlying the trading dynamics of diverse companies. Further, our observation of long-range power-law correlations and a parallel with the crossover in the scaling of absolute price returns for each individual stock, support the hypothesis that the dynamics of transaction times may play a role in the process of price formation.

摘要

我们分析了代表美国经济八个部门的30家公司在4年时间内连续股票交易之间的时间间隔序列。对于所有公司,我们发现:(i)交易间隔时间的概率密度函数可以用威布尔分布拟合;(ii)经过适当缩放后,所有公司的概率密度会汇聚到一条单一曲线上,这意味着存在一种通用的函数形式;(iii)交易间隔时间在一个交易日内呈现幂律相关行为,并且在更大的时间尺度上具有始终更高的相关程度,这与相应公司绝对价格回报的相关行为一致;(iv)交易间隔时间增量的幅度序列具有长程幂律相关性,这表明交易动态中存在非线性特征,而符号序列在小尺度上是反相关的。我们的结果表明,无论行业部门、市值和交易活动的平均水平如何,交易间隔时间序列都呈现出可能通用的标度模式,这可能与不同公司交易动态背后的共同机制有关。此外,我们对长程幂律相关性的观察以及与每只股票绝对价格回报标度交叉的平行关系,支持了交易时间动态可能在价格形成过程中起作用的假设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验