Suppr超能文献

熵测度、熵估计及其在量化复杂动力学中的性能:伪像、非平稳性和长程相关性的影响。

Entropy measures, entropy estimators, and their performance in quantifying complex dynamics: Effects of artifacts, nonstationarity, and long-range correlations.

机构信息

School of Systems Science, Beijing Normal University, Beijing 100875, People's Republic of China.

Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, Massachusetts 02215, USA.

出版信息

Phys Rev E. 2017 Jun;95(6-1):062114. doi: 10.1103/PhysRevE.95.062114. Epub 2017 Jun 12.

Abstract

Entropy measures are widely applied to quantify the complexity of dynamical systems in diverse fields. However, the practical application of entropy methods is challenging, due to the variety of entropy measures and estimators and the complexity of real-world time series, including nonstationarities and long-range correlations (LRC). We conduct a systematic study on the performance, bias, and limitations of three basic measures (entropy, conditional entropy, information storage) and three traditionally used estimators (linear, kernel, nearest neighbor). We investigate the dependence of entropy measures on estimator- and process-specific parameters, and we show the effects of three types of nonstationarities due to artifacts (trends, spikes, local variance change) in simulations of stochastic autoregressive processes. We also analyze the impact of LRC on the theoretical and estimated values of entropy measures. Finally, we apply entropy methods on heart rate variability data from subjects in different physiological states and clinical conditions. We find that entropy measures can only differentiate changes of specific types in cardiac dynamics and that appropriate preprocessing is vital for correct estimation and interpretation. Demonstrating the limitations of entropy methods and shedding light on how to mitigate bias and provide correct interpretations of results, this work can serve as a comprehensive reference for the application of entropy methods and the evaluation of existing studies.

摘要

熵测度广泛应用于量化不同领域中动力系统的复杂性。然而,由于熵测度和估计器的多样性以及现实世界时间序列的复杂性,包括非平稳性和长程相关性 (LRC),熵方法的实际应用具有挑战性。我们对三种基本测度(熵、条件熵、信息存储)和三种传统估计器(线性、核、最近邻)的性能、偏差和局限性进行了系统研究。我们研究了熵测度对估计器和过程特定参数的依赖性,并通过随机自回归过程的模拟展示了由于伪像(趋势、尖峰、局部方差变化)引起的三种类型非平稳性的影响。我们还分析了长程相关性对熵测度的理论和估计值的影响。最后,我们将熵方法应用于来自不同生理状态和临床条件的受试者的心率变异性数据。我们发现,熵测度只能区分特定类型的心脏动力学变化,并且适当的预处理对于正确的估计和解释至关重要。本工作展示了熵方法的局限性,并阐明了如何减轻偏差并提供对结果的正确解释,可为熵方法的应用和现有研究的评估提供全面的参考。

相似文献

2
Multiscale information storage of linear long-range correlated stochastic processes.
Phys Rev E. 2019 Mar;99(3-1):032115. doi: 10.1103/PhysRevE.99.032115.
3
Cardiovascular and respiratory variability during orthostatic and mental stress: A comparison of entropy estimators.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:3481-3484. doi: 10.1109/EMBC.2017.8037606.
4
Estimating the decomposition of predictive information in multivariate systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Mar;91(3):032904. doi: 10.1103/PhysRevE.91.032904. Epub 2015 Mar 6.
5
Geometric k-nearest neighbor estimation of entropy and mutual information.
Chaos. 2018 Mar;28(3):033114. doi: 10.1063/1.5011683.
6
Entropy Estimators for Markovian Sequences: A Comparative Analysis.
Entropy (Basel). 2024 Jan 17;26(1):0. doi: 10.3390/e26010079.
10
Estimating Transfer Entropy in Continuous Time Between Neural Spike Trains or Other Event-Based Data.
PLoS Comput Biol. 2021 Apr 19;17(4):e1008054. doi: 10.1371/journal.pcbi.1008054. eCollection 2021 Apr.

引用本文的文献

1
Complexity synchronization analysis of neurophysiological data: Theory and methods.
Front Netw Physiol. 2025 May 14;5:1570530. doi: 10.3389/fnetp.2025.1570530. eCollection 2025.
2
Information dynamics of in silico EEG Brain Waves: Insights into oscillations and functions.
PLoS Comput Biol. 2024 Sep 5;20(9):e1012369. doi: 10.1371/journal.pcbi.1012369. eCollection 2024 Sep.
3
Response inhibition in premotor cortex corresponds to a complex reshuffle of the mesoscopic information network.
Netw Neurosci. 2024 Jul 1;8(2):597-622. doi: 10.1162/netn_a_00365. eCollection 2024.
6
Inferring connectivity of an oscillatory network via the phase dynamics reconstruction.
Front Netw Physiol. 2023 Nov 23;3:1298228. doi: 10.3389/fnetp.2023.1298228. eCollection 2023.
9
Schizophrenia MEG Network Analysis Based on Kernel Granger Causality.
Entropy (Basel). 2023 Jun 30;25(7):1006. doi: 10.3390/e25071006.
10
Information theoretic evidence for layer- and frequency-specific changes in cortical information processing under anesthesia.
PLoS Comput Biol. 2023 Jan 26;19(1):e1010380. doi: 10.1371/journal.pcbi.1010380. eCollection 2023 Jan.

本文引用的文献

2
Permutation Lempel-Ziv complexity measure of electroencephalogram in GABAergic anaesthetics.
Physiol Meas. 2015 Dec;36(12):2483-501. doi: 10.1088/0967-3334/36/12/2483. Epub 2015 Nov 4.
4
Estimating the decomposition of predictive information in multivariate systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Mar;91(3):032904. doi: 10.1103/PhysRevE.91.032904. Epub 2015 Mar 6.
5
Short-term heart rate variability--influence of gender and age in healthy subjects.
PLoS One. 2015 Mar 30;10(3):e0118308. doi: 10.1371/journal.pone.0118308. eCollection 2015.
6
Assessing the complexity of short-term heartbeat interval series by distribution entropy.
Med Biol Eng Comput. 2015 Jan;53(1):77-87. doi: 10.1007/s11517-014-1216-0. Epub 2014 Oct 29.
7
Sample entropy reveals high discriminative power between young and elderly adults in short fMRI data sets.
Front Neuroinform. 2014 Jul 23;8:69. doi: 10.3389/fninf.2014.00069. eCollection 2014.
8
Impact of stock market structure on intertrade time and price dynamics.
PLoS One. 2014 Apr 3;9(4):e92885. doi: 10.1371/journal.pone.0092885. eCollection 2014.
9
Brain entropy mapping using fMRI.
PLoS One. 2014 Mar 21;9(3):e89948. doi: 10.1371/journal.pone.0089948. eCollection 2014.
10
Reduced predictable information in brain signals in autism spectrum disorder.
Front Neuroinform. 2014 Feb 14;8:9. doi: 10.3389/fninf.2014.00009. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验