Suppr超能文献

通过神经网络对样本自协方差函数进行智能解包实现分数动力学识别。

Fractional Dynamics Identification via Intelligent Unpacking of the Sample Autocovariance Function by Neural Networks.

作者信息

Szarek Dawid, Sikora Grzegorz, Balcerek Michał, Jabłoński Ireneusz, Wyłomańska Agnieszka

机构信息

Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.

Department of Electronics, Wroclaw University of Science and Technology, B. Prusa 53/55, 50-317 Wroclaw, Poland.

出版信息

Entropy (Basel). 2020 Nov 20;22(11):1322. doi: 10.3390/e22111322.

Abstract

Many single-particle tracking data related to the motion in crowded environments exhibit anomalous diffusion behavior. This phenomenon can be described by different theoretical models. In this paper, fractional Brownian motion (FBM) was examined as the exemplary Gaussian process with fractional dynamics. The autocovariance function (ACVF) is a function that determines completely the Gaussian process. In the case of experimental data with anomalous dynamics, the main problem is first to recognize the type of anomaly and then to reconstruct properly the physical rules governing such a phenomenon. The challenge is to identify the process from short trajectory inputs. Various approaches to address this problem can be found in the literature, e.g., theoretical properties of the sample ACVF for a given process. This method is effective; however, it does not utilize all of the information contained in the sample ACVF for a given trajectory, i.e., only values of statistics for selected lags are used for identification. An evolution of this approach is proposed in this paper, where the process is determined based on the knowledge extracted from the ACVF. The designed method is intuitive and it uses information directly available in a new fashion. Moreover, the knowledge retrieval from the sample ACVF vector is enhanced with a learning-based scheme operating on the most informative subset of available lags, which is proven to be an effective encoder of the properties inherited in complex data. Finally, the robustness of the proposed algorithm for FBM is demonstrated with the use of Monte Carlo simulations.

摘要

许多与拥挤环境中的运动相关的单粒子跟踪数据呈现出反常扩散行为。这种现象可以用不同的理论模型来描述。在本文中,分数布朗运动(FBM)作为具有分数动力学的典型高斯过程进行了研究。自协方差函数(ACVF)是一个完全确定高斯过程的函数。对于具有反常动力学的实验数据,主要问题首先是识别异常类型,然后正确重建支配这种现象的物理规则。挑战在于从短轨迹输入中识别过程。文献中可以找到解决这个问题的各种方法,例如给定过程的样本ACVF的理论性质。这种方法是有效的;然而,它没有利用给定轨迹的样本ACVF中包含的所有信息,即仅使用选定滞后的统计值进行识别。本文提出了这种方法的一种改进,即基于从ACVF中提取的知识来确定过程。所设计的方法直观,并且以一种新的方式直接利用可用信息。此外,通过在可用滞后的信息量最大的子集上运行的基于学习的方案,增强了从样本ACVF向量中检索知识的能力,这被证明是复杂数据中继承属性的有效编码器。最后,通过蒙特卡罗模拟证明了所提出的FBM算法的鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a478/7712253/675d4f97797b/entropy-22-01322-g001.jpg

相似文献

3
Testing of Multifractional Brownian Motion.
Entropy (Basel). 2020 Dec 12;22(12):1403. doi: 10.3390/e22121403.
4
Mean-squared-displacement statistical test for fractional Brownian motion.
Phys Rev E. 2017 Mar;95(3-1):032110. doi: 10.1103/PhysRevE.95.032110. Epub 2017 Mar 7.
8
Fractional Brownian motion with fluctuating diffusivities.
Phys Rev E. 2024 Jul;110(1-1):014105. doi: 10.1103/PhysRevE.110.014105.
9
Inertia triggers nonergodicity of fractional Brownian motion.
Phys Rev E. 2021 Aug;104(2-1):024115. doi: 10.1103/PhysRevE.104.024115.
10

引用本文的文献

1
Detection of Anomalous Diffusion with Deep Residual Networks.
Entropy (Basel). 2021 May 22;23(6):649. doi: 10.3390/e23060649.

本文引用的文献

2
Probabilistic properties of detrended fluctuation analysis for Gaussian processes.
Phys Rev E. 2020 Mar;101(3-1):032114. doi: 10.1103/PhysRevE.101.032114.
3
Particle Mobility Analysis Using Deep Learning and the Moment Scaling Spectrum.
Sci Rep. 2019 Nov 20;9(1):17160. doi: 10.1038/s41598-019-53663-8.
5
Measurement of anomalous diffusion using recurrent neural networks.
Phys Rev E. 2019 Jul;100(1-1):010102. doi: 10.1103/PhysRevE.100.010102.
6
Scaled Brownian motion with renewal resetting.
Phys Rev E. 2019 Jul;100(1-1):012120. doi: 10.1103/PhysRevE.100.012120.
7
Single-Particle Diffusion Characterization by Deep Learning.
Biophys J. 2019 Jul 23;117(2):185-192. doi: 10.1016/j.bpj.2019.06.015. Epub 2019 Jun 22.
8
Large-Margin Label-Calibrated Support Vector Machines for Positive and Unlabeled Learning.
IEEE Trans Neural Netw Learn Syst. 2019 Nov;30(11):3471-3483. doi: 10.1109/TNNLS.2019.2892403. Epub 2019 Feb 6.
9
Statistical properties of the anomalous scaling exponent estimator based on time-averaged mean-square displacement.
Phys Rev E. 2017 Aug;96(2-1):022132. doi: 10.1103/PhysRevE.96.022132. Epub 2017 Aug 14.
10
An efficient algorithm for extracting the magnitude of the measurement error for fractional dynamics.
Phys Chem Chem Phys. 2017 Oct 11;19(39):26566-26581. doi: 10.1039/c7cp04464j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验