Investigation of multipotent postnatal stem cells from human periodontal ligament.

作者信息

Seo Byoung-Moo, Miura Masako, Gronthos Stan, Bartold Peter Mark, Batouli Sara, Brahim Jaime, Young Marian, Robey Pamela Gehron, Wang Cun-Yu, Shi Songtao

机构信息

Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA.

出版信息

Lancet. 2004;364(9429):149-55. doi: 10.1016/S0140-6736(04)16627-0.

Abstract

BACKGROUND

Periodontal diseases that lead to the destruction of periodontal tissues--including periodontal ligament (PDL), cementum, and bone--are a major cause of tooth loss in adults and are a substantial public-health burden worldwide. PDL is a specialised connective tissue that connects cementum and alveolar bone to maintain and support teeth in situ and preserve tissue homoeostasis. We investigated the notion that human PDL contains stem cells that could be used to regenerate periodontal tissue.

METHODS

PDL tissue was obtained from 25 surgically extracted human third molars and used to isolate PDL stem cells (PDLSCs) by single-colony selection and magnetic activated cell sorting. Immunohistochemical staining, RT-PCR, and northern and western blot analyses were used to identify putative stem-cell markers. Human PDLSCs were transplanted into immunocompromised mice (n=12) and rats (n=6) to assess capacity for tissue regeneration and periodontal repair. Findings PDLSCs expressed the mesenchymal stem-cell markers STRO-1 and CD146/MUC18. Under defined culture conditions, PDLSCs differentiated into cementoblast-like cells, adipocytes, and collagen-forming cells. When transplanted into immunocompromised rodents, PDLSCs showed the capacity to generate a cementum/PDL-like structure and contribute to periodontal tissue repair.

INTERPRETATION

Our findings suggest that PDL contains stem cells that have the potential to generate cementum/PDL-like tissue in vivo. Transplantation of these cells, which can be obtained from an easily accessible tissue resource and expanded ex vivo, might hold promise as a therapeutic approach for reconstruction of tissues destroyed by periodontal diseases.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索