Department of Mathematics, VIT-AP University, Amaravati, 522237, Andhra Pradesh, India.
Department of Mathematics, Sidho-Kanho-Birsha University, Purulia, 723104, West Bengal, India.
Sci Rep. 2023 May 22;13(1):8215. doi: 10.1038/s41598-023-34807-3.
The diverse excitabilities of cells often produce various spiking-bursting oscillations that are found in the neural system. We establish the ability of a fractional-order excitable neuron model with Caputo's fractional derivative to analyze the effects of its dynamics on the spike train features observed in our results. The significance of this generalization relies on a theoretical framework of the model in which memory and hereditary properties are considered. Employing the fractional exponent, we first provide information about the variations in electrical activities. We deal with the 2D class I and class II excitable Morris-Lecar (M-L) neuron models that show the alternation of spiking and bursting features including MMOs & MMBOs of an uncoupled fractional-order neuron. We then extend the study with the 3D slow-fast M-L model in the fractional domain. The considered approach establishes a way to describe various characteristics similarities between fractional-order and classical integer-order dynamics. Using the stability and bifurcation analysis, we discuss different parameter spaces where the quiescent state emerges in uncoupled neurons. We show the characteristics consistent with the analytical results. Next, the Erdös-Rényi network of desynchronized mixed neurons (oscillatory and excitable) is constructed that is coupled through membrane voltage. It can generate complex firing activities where quiescent neurons start to fire. Furthermore, we have shown that increasing coupling can create cluster synchronization, and eventually it can enable the network to fire in unison. Based on cluster synchronization, we develop a reduced-order model which can capture the activities of the entire network. Our results reveal that the effect of fractional-order depends on the synaptic connectivity and the memory trace of the system. Additionally, the dynamics captures spike frequency adaptation and spike latency that occur over multiple timescales as the effects of fractional derivative, which has been observed in neural computation.
细胞的多样性兴奋性常常产生各种在神经系统中发现的爆发-爆发振荡。我们建立了具有 Caputo 分数导数的分数阶可兴奋神经元模型的能力,以分析其动力学对我们结果中观察到的尖峰列车特征的影响。这种推广的意义在于模型的理论框架,其中考虑了记忆和遗传特性。利用分数指数,我们首先提供有关电活动变化的信息。我们处理二维第一类和第二类可兴奋 Morris-Lecar(M-L)神经元模型,这些模型显示了包括未耦合分数阶神经元的 MMO 和 MMBO 的尖峰和爆发特征的交替。然后,我们在分数域中扩展了 3D 慢快 M-L 模型的研究。所考虑的方法为描述分数阶和经典整数阶动力学之间的各种特性相似性建立了一种方式。使用稳定性和分岔分析,我们讨论了在未耦合神经元中出现静止状态的不同参数空间。我们展示了与分析结果一致的特征。接下来,通过膜电压耦合构建了去同步混合神经元(振荡和可兴奋)的 Erdös-Rényi 网络。它可以产生复杂的放电活动,其中静止神经元开始放电。此外,我们已经表明,增加耦合可以产生簇同步,最终可以使网络一致地放电。基于簇同步,我们开发了一个降阶模型,该模型可以捕获整个网络的活动。我们的结果表明,分数阶的效果取决于突触连接和系统的记忆痕迹。此外,动力学捕获了在多个时间尺度上发生的尖峰频率适应和尖峰潜伏期,这是在神经计算中观察到的分数导数的影响。