Department of Bioengineering and Therapeutic Sciences, University of California, Box 0912, San Francisco, CA, USA.
J Pharmacokinet Pharmacodyn. 2010 Jun;37(3):257-76. doi: 10.1007/s10928-010-9159-z. Epub 2010 May 9.
While an increasing number of fractional order integrals and differential equations applications have been reported in the physics, signal processing, engineering and bioengineering literatures, little attention has been paid to this class of models in the pharmacokinetics-pharmacodynamic (PKPD) literature. One of the reasons is computational: while the analytical solution of fractional differential equations is available in special cases, it this turns out that even the simplest PKPD models that can be constructed using fractional calculus do not allow an analytical solution. In this paper, we first introduce new families of PKPD models incorporating fractional order integrals and differential equations, and, second, exemplify and investigate their qualitative behavior. The families represent extensions of frequently used PK link and PD direct and indirect action models, using the tools of fractional calculus. In addition the PD models can be a function of a variable, the active drug, which can smoothly transition from concentration to exposure, to hyper-exposure, according to a fractional integral transformation. To investigate the behavior of the models we propose, we implement numerical algorithms for fractional integration and for the numerical solution of a system of fractional differential equations. For simplicity, in our investigation we concentrate on the pharmacodynamic side of the models, assuming standard (integer order) pharmacokinetics.
虽然越来越多的分数阶积分和微分方程的应用已经在物理学、信号处理、工程和生物工程文献中报道,但在药代动力学-药效动力学(PKPD)文献中,这类模型很少受到关注。原因之一是计算上的:虽然在特殊情况下可以得到分数阶微分方程的解析解,但事实证明,即使是使用分数微积分构建的最简单的 PKPD 模型也不允许有解析解。在本文中,我们首先引入了包含分数阶积分和微分方程的新的 PKPD 模型族,其次,举例说明了它们的定性行为。这些模型族是对常用的 PK 链接和 PD 直接和间接作用模型的扩展,使用了分数微积分的工具。此外,PD 模型可以是一个变量的函数,即活性药物,根据分数积分变换,可以从浓度平滑地过渡到暴露,再到超暴露。为了研究模型的行为,我们提出了分数积分和分数微分方程系统数值解的数值算法。为了简单起见,在我们的研究中,我们集中于模型的药效学方面,假设标准(整数阶)药代动力学。