Platas-Iglesias Carlos, Mato-Iglesias Marta, Djanashvili Kristina, Muller Robert N, Elst Luce Vander, Peters Joop A, de Blas Andrés, Rodríguez-Blas Teresa
Dpto. Química Fundamental, Facultade de Ciencias, Campus da Zapateira s/n, Universidade da Coruña, 15071 A Coruña, Spain.
Chemistry. 2004 Jul 19;10(14):3579-90. doi: 10.1002/chem.200306031.
A new pyridine-containing ligand, N,N'-bis(6-carboxy-2-pyridylmethyl)ethylenediamine-N,N'-diacetic acid (H(4)L), has been designed for the complexation of lanthanide ions. (1)H and (13)C NMR studies in D(2)O solutions show octadentate binding of the ligand to the Ln(III) ions through the nitrogen atoms of two amine groups, the oxygen atoms of four carboxylates, and the two nitrogen atoms of the pyridine rings. Luminescence measurements demonstrate that both Eu(III) and Tb(III) complexes are nine-coordinate, whereby a water molecule completes the Ln(III) coordination sphere. Ligand L can sensitize both the Eu(III) and Tb(III) luminescence; however, the quantum yields of the Eu(III)- and Tb(III)-centered luminescence remain modest. This is explained in terms of energy differences between the singlet and triplet states on the one hand, and between the 0-phonon transition of the triplet state and the excited metal ion states on the other. The anionic [Ln(L)(H2O)]- complexes (Ln=La, Pr, and Gd) were also characterized by theoretical calculations both in vacuo and in aqueous solution (PCM model) at the HF level by means of the 3-21G* basis set for the ligand atoms and a 46+4 f(n) effective core potential for the lanthanides. The structures obtained from these theoretical calculations are in very good agreement with the experimental solution structures, as demonstrated by paramagnetic NMR measurements (lanthanide-induced shifts and relaxation-rate enhancements). Data sets obtained from variable-temperature (17)O NMR at 7.05 T and variable-temperature (1)H nuclear magnetic relaxation dispersion (NMRD) on the Gd(III) complex were fitted simultaneously to give insight into the parameters that govern the water (1)H relaxivity. The water exchange rate (k(298)(ex)=5.0 x 10(6) s(-1)) is slightly faster than in [Gd(dota)(H2O)]- (DOTA=1,4,7,10-tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane). Fast rotation limits the relaxivity under the usual MRI conditions.
一种新的含吡啶配体,N,N'-双(6-羧基-2-吡啶甲基)乙二胺-N,N'-二乙酸(H(4)L),已被设计用于镧系离子的络合。在D(2)O溶液中的(1)H和(13)C NMR研究表明,该配体通过两个胺基的氮原子、四个羧酸盐的氧原子以及吡啶环的两个氮原子与Ln(III)离子形成八齿配位。发光测量表明,Eu(III)和Tb(III)配合物均为九配位,其中一个水分子完成了Ln(III)的配位球。配体L可以敏化Eu(III)和Tb(III)的发光;然而,以Eu(III)和Tb(III)为中心的发光量子产率仍然适中。一方面,这可以用单重态和三重态之间的能量差来解释,另一方面,可以用三重态的0-声子跃迁与激发态金属离子态之间的能量差来解释。阴离子型[Ln(L)(H2O)]-配合物(Ln=La、Pr和Gd)也通过在HF水平上,在真空中和水溶液(PCM模型)中,使用配体原子的3-21G*基组和镧系元素的46+4 f(n)有效核势进行理论计算来表征。如顺磁NMR测量(镧系元素诱导的位移和弛豫速率增强)所示,从这些理论计算中获得的结构与实验溶液结构非常吻合。对在7.05 T下的变温(17)O NMR和Gd(III)配合物的变温(1)H核磁共振弛豫色散(NMRD)获得的数据集进行了同时拟合,以深入了解控制水(1)H弛豫率的参数。水交换率(k(298)(ex)=5.0×10(6) s(-1))略快于[Gd(dota)(H2O)]-(DOTA=1,4,7,10-四(羧甲基)-1,4,7,10-四氮杂环十二烷)。在通常的MRI条件下,快速旋转限制了弛豫率。