Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.
Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States.
Inorg Chem. 2022 Feb 21;61(7):3337-3350. doi: 10.1021/acs.inorgchem.1c03972. Epub 2022 Feb 9.
Uranium-230 is an α-emitting radionuclide with favorable properties for use in targeted α-therapy (TAT), a type of nuclear medicine that harnesses α particles to eradicate cancer cells. To successfully implement this radionuclide for TAT, a bifunctional chelator that can stably bind uranium in vivo is required. To address this need, we investigated the acyclic ligands Hdedpa, HCHXdedpa, Hhox, and HCHXhox as uranium chelators. The stability constants of these ligands with UO were measured via spectrophotometric titrations, revealing log β values that are greater than 18 and 26 for the "pa" and "hox" chelators, respectively, signifying that the resulting complexes are exceedingly stable. In addition, the UO complexes were structurally characterized by NMR spectroscopy and X-ray crystallography. Crystallographic studies reveal that all six donor atoms of the four ligands span the equatorial plane of the UO ion, giving rise to coordinatively saturated complexes that exclude solvent molecules. To further understand the enhanced thermodynamic stabilities of the "hox" chelators over the "pa" chelators, density functional theory (DFT) calculations were employed. The use of the quantum theory of atoms in molecules revealed that the extent of covalency between all four ligands and UO was similar. Analysis of the DFT-computed ligand strain energy suggested that this factor was the major driving force for the higher thermodynamic stability of the "hox" ligands. To assess the suitability of these ligands for use with U TAT in vivo, their kinetic stabilities were probed by challenging the UO complexes with the bone model hydroxyapatite (HAP) and human plasma. All four complexes were >95% stable in human plasma for 14 days, whereas in the presence of HAP, only the complexes of HCHXdedpa and Hhox remained >80% intact over the same period. As a final validation of the suitability of these ligands for radiotherapy applications, the in vivo biodistribution of their UO complexes was determined in mice in comparison to unchelated [UO(NO)]. In contrast to [UO(NO)], which displays significant bone uptake, all four ligand complexes do not accumulate in the skeletal system, indicating that they remain stable in vivo. Collectively, these studies suggest that the equatorial-spanning ligands Hdedpa, HCHXdedpa, Hhox, and HCHXhox are highly promising candidates for use in U TAT.
铀-230 是一种α发射放射性核素,具有用于靶向α治疗 (TAT) 的有利特性,TAT 是一种利用α粒子消除癌细胞的核医学类型。为了成功将这种放射性核素用于 TAT,需要一种能够在体内稳定结合铀的双功能螯合剂。为了满足这一需求,我们研究了无环配体 Hdedpa、HCHXdedpa、Hhox 和 HCHXhox 作为铀螯合剂。通过分光光度滴定法测量了这些配体与 UO 的稳定常数,发现“pa”和“hox”配体的 log β 值均大于 18 和 26,表明形成的配合物非常稳定。此外,通过 NMR 光谱和 X 射线晶体学对 UO 配合物进行了结构表征。晶体学研究表明,四个配体的所有六个供体原子都跨越了 UO 离子的赤道平面,形成配位饱和的配合物,排除了溶剂分子。为了进一步理解“hox”配体相对于“pa”配体增强的热力学稳定性,我们使用了密度泛函理论 (DFT) 计算。原子在分子中的量子理论的使用表明,所有四个配体与 UO 之间的共价程度相似。对 DFT 计算得出的配体应变能的分析表明,该因素是“hox”配体具有更高热力学稳定性的主要驱动力。为了评估这些配体在体内用于 U TAT 的适用性,通过用骨模型羟磷灰石 (HAP) 和人血浆挑战 UO 配合物来探测它们的动力学稳定性。在 14 天内,所有四个配合物在人血浆中均>95%稳定,而在存在 HAP 的情况下,只有 HCHXdedpa 和 Hhox 的配合物在同一时期内保持>80%完整。作为这些配体适用于放射治疗应用的最后验证,在与未螯合的[UO(NO)]相比,在小鼠体内确定了它们的 UO 配合物的体内分布。与[UO(NO)]相比,[UO(NO)]显示出明显的骨摄取,所有四个配体配合物均不会在骨骼系统中积累,表明它们在体内稳定。总的来说,这些研究表明,赤道跨越的配体 Hdedpa、HCHXdedpa、Hhox 和 HCHXhox 是用于 U TAT 的极具前景的候选物。