Centre de Biophysique Moléculaire, UPR 4301 CNRS, rue Charles Sadron, 45071 Orléans, France.
Inorg Chem. 2012 Feb 20;51(4):2522-32. doi: 10.1021/ic202446e. Epub 2012 Jan 10.
In the objective of developing ligands that simultaneously satisfy the requirements for MRI contrast agents and near-infrared emitting optical probes that are suitable for imaging, three isoquinoline-based polyaminocarboxylate ligands, L1, L2 and L3, have been synthesized and the corresponding Gd(3+), Nd(3+) and Yb(3+) complexes investigated. The specific challenge of the present work was to create NIR emitting agents which (i) have excitation wavelengths compatible with biological applications and (ii) are able to emit a sufficient number of photons to ensure sensitive NIR detection for microscopic imaging. Here we report the first observation of a NIR signal arising from a Ln(3+) complex in aqueous solution in a microscopy setup. The lanthanide complexes have high thermodynamic stability (log K(LnL) =17.7-18.7) and good selectivity for lanthanide ions versus the endogenous cations Zn(2+), Cu(2+), and Ca(2+) thus preventing transmetalation. A variable temperature and pressure (17)O NMR study combined with nuclear magnetic relaxation dispersion measurements yielded the microscopic parameters characterizing water exchange and rotation. Bishydration of the lanthanide cation in the complexes, an important advantage to obtain high relaxivity for the Gd(3+) chelates, has been demonstrated by (17)O chemical shifts for the Gd(3+) complexes and by luminescence lifetime measurements for the Yb(3+) analogues. The water exchange on the three Gd(3+) complexes is considerably faster (k(ex)(298) = (13.9-15.4) × 10(6) s(-1)) than on commercial Gd(3+)-based contrast agents and proceeds via a dissociative mechanism, as evidenced by the large positive activation volumes for GdL1 and GdL2 (+10.3 ± 0.9 and +10.6 ± 0.9 cm(3) mol(-1), respectively). The relaxivity of GdL1 is doubled at 40 MHz and 298 K in fetal bovine serum (r(1) = 16.1 vs 8.5 mM(-1) s(-1) in HEPES buffer), due to hydrophobic interactions between the chelate and serum proteins. The isoquinoline core allows for the optimization of the optical properties of the luminescent lanthanide complexes in comparison to the pyridinic analogues and provides significant shifts of the excitation energies toward lower values which therefore become more adapted for biological applications. L2 and L3 bear two methoxy substituents on the aromatic core in ortho and para positions, respectively, that further modulate their electronic structure. The Nd(3+) and Yb(3+) complexes of the ligand L3, which incorporates the p-dimethoxyisoquinoline moiety, can be excited up to 420 nm. This wavelength is shifted over 100 nm toward lower energy in comparison to the pyridine-based analogue. The luminescence quantum yields of the Nd(3+) (0.013-0.016%) and Yb(3+) chelates (0.028-0.040%) are in the range of the best nonhydrated complexes, despite the presence of two inner sphere water molecules. More importantly, the 980 nm NIR emission band of YbL3 was detected with a good sensitivity in a proof of concept microscopy experiment at a concentration of 10 μM in fetal bovine serum. Our results demonstrate that even bishydrated NIR lanthanide complexes can emit a sufficient number of photons to ensure sensitive detection in practical applications. In particular, these ligands containing an aromatic core with coordinating pyridine nitrogen can be easily modified to tune the optical properties of the NIR luminescent lanthanide complexes while retaining good complex stability and MRI characteristics for the Gd(3+) analogues. They constitute a highly versatile platform for the development of bimodal MR and optical imaging probes based on a simple mixture of Gd(3+) and Yb(3+)/Nd(3+) complexes using an identical chelator. Given the presence of two inner sphere water molecules, important for MRI applications of the corresponding Gd(3+) analogues, this result is particularly exciting and opens wide perspectives not only for NIR imaging based on Ln(3+) ions but also for the design of combined NIR optical and MRI probes.
在开发同时满足磁共振成像对比剂和适用于成像的近红外发射光学探针要求的配体的目标下,合成了三种基于异喹啉的多氨基羧酸配体 L1、L2 和 L3,并研究了相应的 Gd(3+)、Nd(3+) 和 Yb(3+) 配合物。本工作的具体挑战是创建近红外发射试剂,其 (i) 具有与生物应用兼容的激发波长,以及 (ii) 能够发射足够数量的光子,以确保对微观成像的敏感近红外检测。在这里,我们报告了首次在显微镜设置中观察到来自水溶液中镧系元素配合物的近红外信号。镧系元素配合物具有高热力学稳定性(log K(LnL) =17.7-18.7)和对镧系元素离子相对于内源性阳离子 Zn(2+)、Cu(2+) 和 Ca(2+) 的良好选择性,从而防止转金属化。变温变压 (17)O NMR 研究结合核磁共振弛豫色散测量得到了表征水交换和旋转的微观参数。通过 (17)O 化学位移证明了配合物中镧系元素阳离子的双水化,这是获得 Gd(3+) 螯合物高弛豫率的重要优势,以及通过 Yb(3+) 类似物的荧光寿命测量。三种 Gd(3+) 配合物的水交换速度快得多(k(ex)(298) = (13.9-15.4) × 10(6) s(-1))比商业 Gd(3+)-基于的对比剂,并通过 GdL1 和 GdL2 的大正激活体积(分别为+10.3 ± 0.9 和+10.6 ± 0.9 cm(3) mol(-1))证明了通过离解机制进行,。GdL1 在 40 MHz 和 298 K 下在胎牛血清中的弛豫率提高了一倍(r(1) = 16.1 对 8.5 mM(-1) s(-1)在 HEPES 缓冲液中),这是由于螯合物与血清蛋白之间的疏水相互作用。异喹啉核允许与吡啶类似物相比优化发光镧系元素配合物的光学性质,并提供激发能量的显著位移,使其更适应生物应用。L2 和 L3 在芳香核的邻位和对位上分别带有两个甲氧基取代基,进一步调节它们的电子结构。配体 L3 的 Nd(3+) 和 Yb(3+) 配合物,其中包含 p-二甲氧基异喹啉部分,可以被激发到 420nm。与基于吡啶的类似物相比,该波长向低能量方向移动了 100nm 以上。Nd(3+)(0.013-0.016%)和 Yb(3+) 螯合物(0.028-0.040%)的荧光量子产率处于最佳非水合配合物的范围内,尽管存在两个内球水分子。更重要的是,在胎牛血清浓度为 10 μM 的概念验证显微镜实验中,检测到 YbL3 的 980nm 近红外发射带具有良好的灵敏度。我们的结果表明,即使是双水化的近红外镧系元素配合物也能够发射足够数量的光子,以确保在实际应用中进行敏感检测。特别是,这些含有配位吡啶氮的芳香核的配体可以很容易地进行修饰,以调整近红外发光镧系元素配合物的光学性质,同时保留 Gd(3+) 类似物的良好配合物稳定性和 MRI 特性。它们构成了一个高度通用的平台,用于开发基于 Gd(3+) 和 Yb(3+)/Nd(3+) 配合物的简单混合物的磁共振和光学成像探针,使用相同的螯合剂。鉴于相应 Gd(3+) 类似物的 MRI 应用中存在两个内球水分子,这一结果尤其令人兴奋,并不仅为基于 Ln(3+) 离子的近红外成像开辟了广阔的前景,而且为设计组合近红外光学和 MRI 探针开辟了广阔的前景。