Suppr超能文献

对过量表达趋化性受体Tsr的大肠杆菌中膜内陷的三维电子显微镜成像

Three-dimensional electron microscopic imaging of membrane invaginations in Escherichia coli overproducing the chemotaxis receptor Tsr.

作者信息

Lefman Jonathan, Zhang Peijun, Hirai Teruhisa, Weis Robert M, Juliani Jemma, Bliss Donald, Kessel Martin, Bos Erik, Peters Peter J, Subramaniam Sriram

机构信息

Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817, USA.

出版信息

J Bacteriol. 2004 Aug;186(15):5052-61. doi: 10.1128/JB.186.15.5052-5061.2004.

Abstract

Electron tomography is a powerful method for determining the three-dimensional structures of large macromolecular assemblies, such as cells, organelles, and multiprotein complexes, when crystallographic averaging methods are not applicable. Here we used electron tomographic imaging to determine the molecular architecture of Escherichia coli cells engineered to overproduce the bacterial chemotaxis receptor Tsr. Tomograms constructed from fixed, cryosectioned cells revealed that overproduction of Tsr led to formation of an extended internal membrane network composed of stacks and extended tubular structures. We present an interpretation of the tomogram in terms of the packing arrangement of Tsr using constraints derived from previous X-ray and electron-crystallographic studies of receptor clusters. Our results imply that the interaction between the cytoplasmic ends of Tsr is likely to stabilize the presence of the membrane networks in cells overproducing Tsr. We propose that membrane invaginations that are potentially capable of supporting axial interactions between receptor clusters in apposing membranes could also be present in wild-type E. coli and that such receptor aggregates could play an important role in signal transduction during bacterial chemotaxis.

摘要

当晶体学平均方法不适用时,电子断层扫描是确定大型大分子组装体(如细胞、细胞器和多蛋白复合物)三维结构的有力方法。在这里,我们使用电子断层扫描成像来确定经过基因工程改造以过量生产细菌趋化受体Tsr的大肠杆菌细胞的分子结构。由固定的冷冻切片细胞构建的断层图像显示,Tsr的过量生产导致形成了一个由堆叠和延伸的管状结构组成的扩展内膜网络。我们利用先前对受体簇的X射线和电子晶体学研究得出的限制条件,对断层图像中Tsr的堆积排列进行了解释。我们的结果表明,Tsr细胞质末端之间的相互作用可能稳定了过量生产Tsr的细胞中膜网络的存在。我们提出,在野生型大肠杆菌中也可能存在潜在能够支持相邻膜中受体簇之间轴向相互作用的膜内陷,并且这种受体聚集体可能在细菌趋化过程中的信号转导中发挥重要作用。

相似文献

2
Electron microscopic analysis of membrane assemblies formed by the bacterial chemotaxis receptor Tsr.
J Bacteriol. 2003 Jun;185(12):3636-43. doi: 10.1128/JB.185.12.3636-3643.2003.
4
Cooperative signaling among bacterial chemoreceptors.
Biochemistry. 2005 Nov 1;44(43):14298-307. doi: 10.1021/bi050567y.
5
Electron tomography of bacterial chemotaxis receptor assemblies.
Methods Cell Biol. 2007;79:373-84. doi: 10.1016/S0091-679X(06)79014-8.
8
Studies of the structural organization of a bacterial chemoreceptor by electron microscopy.
J Struct Biol. 1994 Mar-Apr;112(2):117-24. doi: 10.1006/jsbi.1994.1013.
9
Not too loose, not too tight--just right. Biphasic control of the Tsr HAMP domain.
Mol Microbiol. 2011 May;80(3):573-6. doi: 10.1111/j.1365-2958.2011.07578.x. Epub 2011 Feb 28.
10
Chemotactic signal integration in bacteria.
Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9757-61. doi: 10.1073/pnas.92.21.9757.

引用本文的文献

1
Mechanisms of E. coli chemotaxis signaling pathways visualized using cryoET and computational approaches.
Biochem Soc Trans. 2022 Dec 16;50(6):1595-1605. doi: 10.1042/BST20220191.
2
Inducible intracellular membranes: molecular aspects and emerging applications.
Microb Cell Fact. 2020 Sep 4;19(1):176. doi: 10.1186/s12934-020-01433-x.
3
Structural and Proteomic Changes in Viable but Non-culturable .
Front Microbiol. 2019 Apr 17;10:793. doi: 10.3389/fmicb.2019.00793. eCollection 2019.
5
His-Tag-Mediated Dimerization of Chemoreceptors Leads to Assembly of Functional Nanoarrays.
Biochemistry. 2017 Nov 7;56(44):5874-5885. doi: 10.1021/acs.biochem.7b00698. Epub 2017 Sep 22.
6
A Complex Endomembrane System in the Archaeon Tapped by .
Front Microbiol. 2017 Jun 13;8:1072. doi: 10.3389/fmicb.2017.01072. eCollection 2017.
7
Origins of chemoreceptor curvature sorting in Escherichia coli.
Nat Commun. 2017 Mar 21;8:14838. doi: 10.1038/ncomms14838.
8
New insights into bacterial chemoreceptor array structure and assembly from electron cryotomography.
Biochemistry. 2014 Mar 18;53(10):1575-85. doi: 10.1021/bi5000614. Epub 2014 Mar 6.
10
Self-association of the histidine kinase CheA as studied by pulsed dipolar ESR spectroscopy.
Biophys J. 2012 May 2;102(9):2192-201. doi: 10.1016/j.bpj.2012.03.038.

本文引用的文献

1
Reconstruction of three dimensional structures from electron micrographs.
Nature. 1968 Jan 13;217(5124):130-4. doi: 10.1038/217130a0.
2
Formation of stacked ER cisternae by low affinity protein interactions.
J Cell Biol. 2003 Oct 27;163(2):257-69. doi: 10.1083/jcb.200306020.
3
Quantitative modeling of sensitivity in bacterial chemotaxis: the role of coupling among different chemoreceptor species.
Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8223-8. doi: 10.1073/pnas.1330839100. Epub 2003 Jun 25.
4
Electron microscopic analysis of membrane assemblies formed by the bacterial chemotaxis receptor Tsr.
J Bacteriol. 2003 Jun;185(12):3636-43. doi: 10.1128/JB.185.12.3636-3643.2003.
5
A spatially extended stochastic model of the bacterial chemotaxis signalling pathway.
J Mol Biol. 2003 May 30;329(2):291-309. doi: 10.1016/s0022-2836(03)00437-6.
6
Endocytosis: curvature to the ENTH degree.
Curr Biol. 2002 Nov 19;12(22):R770-2. doi: 10.1016/s0960-9822(02)01289-7.
7
Curvature of clathrin-coated pits driven by epsin.
Nature. 2002 Sep 26;419(6905):361-6. doi: 10.1038/nature01020.
8
Dynamic and clustering model of bacterial chemotaxis receptors: structural basis for signaling and high sensitivity.
Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11611-5. doi: 10.1073/pnas.132376499. Epub 2002 Aug 19.
9
Subunit organization in a soluble complex of tar, CheW, and CheA by electron microscopy.
J Biol Chem. 2002 Sep 27;277(39):36755-9. doi: 10.1074/jbc.M204324200. Epub 2002 Jul 15.
10
Information processing in bacterial chemotaxis.
Sci STKE. 2002 May 14;2002(132):pe25. doi: 10.1126/stke.2002.132.pe25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验