Kim Sung-Hou, Wang Weiru, Kim Kyeong Kyu
Department of Chemistry and E. O. Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA.
Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11611-5. doi: 10.1073/pnas.132376499. Epub 2002 Aug 19.
Bacterial chemotaxis receptors can detect a small concentration gradient of attractants and repellents in the environment over a wide range of background concentration. The clustering of these receptors to form patches observed in vivo and in vitro has been suspected as a reason for the high sensitivity, and such wide dynamic range is thought to be due to the resetting of the receptor sensitivity threshold by methylation/demethylation of the receptors. However, the mechanisms by which such high sensitivity is achieved and how the methylation/demethylation resets the sensitivity are not well understood. A molecular modeling of an intact bacterial chemotaxis receptor based on the crystal structures of a cytoplasmic domain and a periplasmic domain suggests an interesting clustering of three dimeric receptors and a two-dimensional, close-packed lattice formation of the clusters, where each receptor dimer contacts two other receptor dimers at the cytoplasmic domain and two yet different receptor dimers at the periplasmic domain. This interconnection of the receptors to form a patch of receptor clusters suggests a structural basis for the high sensitivity of the bacterial chemotaxis receptors. Furthermore, we present crystallographic data suggesting that, in contrast to most molecular signaling by conformational changes and/or oligomerization of the signaling molecules, the changes in dynamic property of the receptors on ligand binding or methylation may be the language of the signaling by the chemotaxis receptors. Taken together, the changes of the dynamic property of one receptor propagating mechanically to many others in the receptor patch provides a plausible, simple mechanism for the high sensitivity and the dynamic range of the receptors.
细菌趋化性受体能够在广泛的背景浓度范围内,检测环境中引诱剂和驱避剂的微小浓度梯度。这些受体在体内和体外形成斑块的聚集现象,被怀疑是其具有高灵敏度的原因,而如此宽的动态范围被认为是由于受体的甲基化/去甲基化重置了受体的灵敏度阈值。然而,实现这种高灵敏度的机制以及甲基化/去甲基化如何重置灵敏度,目前还不太清楚。基于细胞质结构域和周质结构域的晶体结构对完整细菌趋化性受体进行的分子建模表明,三个二聚体受体形成了有趣的聚集,并形成了二维紧密堆积的簇晶格,其中每个受体二聚体在细胞质结构域与另外两个受体二聚体接触,在周质结构域与另外两个不同的受体二聚体接触。受体相互连接形成受体簇斑块,这为细菌趋化性受体的高灵敏度提供了结构基础。此外,我们提供的晶体学数据表明,与大多数通过信号分子的构象变化和/或寡聚化进行的分子信号传导不同,受体在结合配体或甲基化时动态特性的变化可能是趋化性受体信号传导的方式。综上所述,一个受体的动态特性变化机械地传播到受体斑块中的许多其他受体,为受体的高灵敏度和动态范围提供了一个合理、简单的机制。