Tisato Francesco, Bolzati Cristina, Porchia Marina, Refosco Fiorenzo
Istituto di Chimica Inorganica e delle Superfici, CNR, Corso Stati Uniti 4, 35127 Padova, Italy.
Mass Spectrom Rev. 2004 Sep-Oct;23(5):309-32. doi: 10.1002/mas.20000.
Diagnostic nuclear medicine (NM) is among the imaging procedures (together with X-ray, computerized tomography, magnetic resonance, and echography) the clinicians can routinely adopt to image organs or tissues and related disorders. (99m)Tc-based agents are the radiopharmaceuticals of election in diagnostic NM because of the ideal physical properties of the 99mTc nuclide (t1/2 6.01 hr; Egamma 142 keV), low cost, and easy availability through the commercial 99Mo/99mTc generator, and chemical versatility of the element. In the last two decades the synergistic work of clinics, pharmacologists, and coordination chemists has had a tremendous impact in the development of new 99mTc-based radiopharmaceuticals through the recognition of the structure at the molecular level of the agent utilized. This has been achieved by studying the physico-chemical properties of the long-lived 99gTc (t1/2 2.11 x 10(5) year; Ebeta 292 keV) and third-row congener Re isostructural compounds. Electrospray ionization mass spectrometry (ESI-MS) and collision experiments (MS/MS) represent valuable analytical techniques suitable for the characterization of both technetium and rhenium complexes relevant to NM. Unequivocal structural identification of these bioinorganic compounds, either simple coordination complexes ("essential radiopharmaceuticals") or more sophisticated structures carrying bioactive fragments ("receptor-specific" radiopharmaceuticals), can be realized in combination with multinuclear NMR spectroscopy. MS/MS experiments provide useful information on the different metal-ligand bond strength, and comparison of the fragmentation profiles of isostructural technetium and rhenium compounds give additional details on the role played by the metal in determining preferred decomposition channels. The analysis of these data contribute to design novel synthetic strategies for the obtainment of technetium and rhenium compounds relevant to NM. The chemistry underlying the production of a new class of potential radiopharmaceuticals including a terminal nitrogen bond and a mixed coordination sphere comprising heterodiphosphines and/or dithiocarbamates (DTC) is presented in detail together with the ESI-MS and MS/MS investigations.
诊断核医学(NM)是临床医生可常规采用的成像检查方法之一(与X射线、计算机断层扫描、磁共振成像和超声检查一起),用于对器官或组织及其相关疾病进行成像。基于(99m)Tc的放射性药物是诊断核医学中首选的放射性药物,这是因为99mTc核素具有理想的物理性质(半衰期6.01小时;γ射线能量142keV)、成本低,且通过商用99Mo/99mTc发生器易于获得,以及该元素具有化学多功能性。在过去二十年中,临床医生、药理学家和配位化学家的协同工作通过在分子水平上识别所用药物的结构,对新型基于99mTc的放射性药物的开发产生了巨大影响。这是通过研究长寿命99gTc(半衰期2.11×10(5)年;β射线能量292keV)和第三周期同族元素Re的等结构化合物的物理化学性质实现的。电喷雾电离质谱(ESI-MS)和碰撞实验(MS/MS)是适用于表征与核医学相关的锝和铼配合物的有价值的分析技术。这些生物无机化合物,无论是简单的配位配合物(“必需放射性药物”)还是带有生物活性片段的更复杂结构(“受体特异性”放射性药物),都可以结合多核NMR光谱进行明确的结构鉴定。MS/MS实验提供了关于不同金属-配体键强度的有用信息,等结构锝和铼化合物的碎裂图谱比较给出了金属在确定优先分解途径中所起作用的更多细节。对这些数据的分析有助于设计获取与核医学相关的锝和铼化合物的新合成策略。本文详细介绍了一类新型潜在放射性药物的制备所依据的化学原理,这类药物包括末端氮键以及包含杂双膦和/或二硫代氨基甲酸盐(DTC)的混合配位球,并进行了ESI-MS和MS/MS研究。